From Noise to Insight:
Improving Neuroimaging Measurement
for Credible and Reproducible
Neuroscience

Ettore Ambrosini

About Me

I'm a researcher (better, a research worker) more than a Professor

I've 15 years of <u>experience</u> in designing experiments and collecting and analyzing data (and I still enjoy doing it)

→ I've tons of <u>practical advices</u> for you

I'm trying to use good research practices to do cumulative science

MARIA MONTEFINESE

ANTONINO VISALLI

GIADA VIVIANI

IRENE DI PIETRO

About Me

I'm a researcher (better, a <u>research worker</u>) more than a Professor

I've 15 years of <u>experience</u> in designing experiments and collecting and analyzing data (and I still enjoy doing it)

→ I've tons of <u>practical advices</u> for you

I'm trying to use good research practices to do cumulative science

MARIA MONTEFINESE

ANTONINO VISALLI

GIADA VIVIANI

IRENE DI PIETRO

The Cornerstone of Credible (Neuro)science

Accurate and Precise Measurement

- Data interpretation
- Reproducibility of findings
 - Cross-study comparisons
 - Generalize results
- Creation of theoretical models

Scientific progress

From Noise to Insight: A (Neuro)scientist's Quest

The Promise:

We can unlock vs.

brain secrets!

The Reality:

It's messy...

very messy

The Goal:

Credible, reproducible (neuro)science

The Challenge:

Separate signal from noise

The Quest:

From messy data to reliable insights

fMRI Measures: Seeing the Lights, Missing the Action

"Activation"

≠
Understanding function

We know something is happening... ...but not what's going on!!!

The EEG Paradox: More Direct, yet More Ambiguous

"Activation"

≠
Understanding function

We know something is happening... ...but not what's going on!!!

The Brain Signals Localization Problem(s)

1) What's the function of that region/wave?

Where is the region X? (e.g., the Broca's area)

When is the wave X? (e.g., the P3 ERP)

The Brain Signals Localization Problem(s)

We don't even know how do define/isolate "regions" and "waves"!!!

INTERNAL WORLD **Memories EXTERNAL** WORLD **Actions** (Language)

Goals

EXTERNAL WORLD

Senses

List the cognitive functions that are important (to survive)

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.

Have you ever heard of Functional Connectivity Networks? What do they mean (functionally)?

List them

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.

List the cognitive furthat are important (to

NOW CONNECT THEM! SOMETHING STRANGE?

Connectivity Networks?

ANGE?

Lat 45 Liey mean (functionally)?

List them

1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.

The Brain Signals Amplitude Problem

- 1) What's the function of that region/wave?
- 2) Larger signals not always mean stronger/better process/ability!

Does it Measure Motor Inhibition? How/Why?

But Methodology is Key! You Must Know Your Stuff

Prepotent motor activity and inhibitory control demands in different variants of the go/no-go paradigm

Jan R. Wessel^{1,2}

Paper

Test your interpretations!

Test your interpretations!

Motor Inhibition

Guess the correlation!

Guess the correlation!

Lost in Translation: Brain-Behavior Predictions

Brain-Behavior Predictions: Too Good to be True?

Reproducible brain-wide association studies require thousands of individuals

Test your interpretations! (but do it better: multilevel modelling)

Imer(RTs ~ ERP*CONG + (ERP*CONG | SS)

Let's Start Again! How to Fix this Mess?!?

INCREASE SNR
(AND RELIABILITY)
(AND VALIDITY)
OF YOUR BRAIN AND BEHAVIOR
MEASURES

Let's Fix this Mess (1)

25 Exps25 trials

Let's fix this Mess (1) – Increase Number of Trials

25 Exps 100 trials

Let's fix this Mess (1) - Increase Number of Trials

INCREASE SNR
(AND RELIABILITY)
BY REDUCING
INTRA-INDIVIDUAL VAR
BY INCREASING
NUMBER OF TRIALS!

25 Exps 100 trials

Let's Fix this Mess (1) - Increase Number of Trials

Using precision approaches to improve brain-

behavior prediction

Hyejin J. Lee D 1,2,*, Ally Dworetsky 1,

Nathan Labora¹, and Caterina Gratton^{1,2,*}

<u>Paper</u>

Aim for 80-120 trials/condition for w/in-SS studies

NB: Brain measures are way noisier!

→ Good preprocessing

(C) Correlation

Increasing amounts of within-subject variability

Let's Fix this Mess (2) - Preprocess your Brain Measures

INCREASE SNR (AND RELIABILITY) OF YOUR EEG DATA WITH A GOOD PREPROCESSING

- 1) Use an evidence-based, reproducible preprocessing pipeline sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline
 - 2) Perfect the art of ICA-based artifact removal labeling.ucsd.edu/tutorial
 - 3) Use the EEGLAB TBT plugin (for Trial-By-Trial epoch rejection without losing trials) github.com/mattansb/TBT

Let's Fix this Mess (3) - Control your Confounds

Brain and Behavior signals are affected by tens of confounds

- 1) Time-On-Task effects (eg, fatigue/boredom, learning)
- 2) Low-level Stimulus/Response features (eg, visual hemifield, responding hand)
- 3) Sequential effects of performance (eg, post-error slowing, trial-by-trial autocorr)
- 4) Sequential effects of low-level S/R features (eg, Stimulus and/or Response repetition)
- 5) Sequential effects of experimental conditions (eg, condition repetition, priming)

Let's Fix this Mess (3) - Control your Confounds

Brain and Behavior signals are affected by tens of confounds

- 1) Time-On-Task effects(eg, fatigue/boredom, learning)
- 2) Low-level Stimulus/Response features (eg, visual hemifield, responding hand)
- 3) Sequential effects of performance (eg, post-error slowing, trial-by-trial autocorr)
- 4) Sequential effects of low-level S/R features (eg, Stimulus and/or Response repetition)
- 5) Sequential effects of experimental conditions (eg, condition repetition, priming)

Let's Fix this Mess (3) – Control your Confounds

INCREASE SNR (AND RELIABILITY/VALIDITY) OF YOUR MEASURES BY CONTROLLING CONFOUNDS

- 1) Balance your experimental design FOR EVERYTHING (methodological control)
- 2) Create your trial list to AVOID/BALANCE ANY SEQUENTIAL EFFECT (methodological control)

How do you decide the order of trials?

Let's Fix this Mess (3) – Control your Confounds

2.1a) Use MIX to avoid/balance sequential effects

2.1b) Use MATCH to balance covariates
(both here)

2.1c) Use Excel Solver to do both (evolutionary optimizer)[File -> Options -> Add-ins -> Excel add-ins -> Solver]

Mix, a program for pseudorandomization

MAARTEN VAN CASTEREN and MATTHEW H. DAVIS MRC Cognition and Brain Sciences Unit, Cambridge, England

Match: A program to assist in matching the conditions of factorial experiments

MAARTEN VAN CASTEREN AND MATTHEW H. DAVIS MRC Cognition and Brain Sciences Unit, Cambridge, England

Let's Fix this Mess (3) – Control your Confounds

Trial	COND			
0	L			n
1	L	LL	L	10
2	L	LL	R	10
3	L	LL		
4	L	LL	LL	5
5	L	LL	LR	5
6	R	LR	RL	5 5 5
7	R	RR	RR	5
8	R	RR		
9	R	RR		
10	R	RR		
11	R	RR		
12	L	RL		
13	R	LR		
14	L	RL		
15	R	LR		
16	L	RL		
17	R	LR		
18	L	RL		
19	R	LR		
20	L	RL		

2.2) Compute trial-by-trial probabilities of experimental confounds (and effects)

Hierarchical
Gaussian Filter
(Bayesian observer)

github.com/translationalneuromodeling/tapas

Let's Fix this Mess (3) — Control your Confounds

INCREASE SNR (AND RELIABILITY/VALIDITY) OF YOUR MEASURES BY CONTROLLING CONFOUNDS

- 1) Try to balance your experimental design FOR EVERYTHING (methodological control)
- 2) Try to balance your trial list FOR EVERY SEQUENTIAL EFFECT (methodological control)
 - 3) Include these confounds in your statistical model! (statistical control)

Let's Fix this Mess (3) - Control your Confounds

A comparison between different variants of the spatial Stroop task: The influence of analytic flexibility on Stroop effect estimates and reliability

Giada Viviani^{1,2} · Antonino Visalli¹ · Livio Finos^{2,3} · Antonino Vallesi^{1,3} · Ettore Ambrosini^{1,3,4}

<u>Paper</u>

```
RT ~ Trial*Block +
hStim + vStim + hResp + vResp +
preRT + PostERR +
P(Stim) + P(Resp) + P(Resp|Stim) + P(Cong) +
Task*Cong +
(Task*Cong|SSID)
```


Let's Fix this Mess (4) – Increase Your Signal

INCREASE SNR (AND REL/VAL) OF YOUR MEASURES BY IMPROVING YOUR MANIPULATIONS

→ Use good experimental paradigms

THEORY IS IMPORTANT!!!

Remember: You Must Know Your Stuff

The Stroop legacy: A cautionary tale on methodological issues and a proposed spatial solution

Giada Viviani^{1,2} · Antonino Visalli³ · Maria Montefinese⁴ · Antonino Vallesi^{1,2} · Ettore Ambrosini^{1,2,5}

Paper

Incongruent

Congruent

Let's Fix this Mess (4) – Increase Your Signal

Let's Fix this Mess (4) – Increase Your Signal

THEORY IS IMPORTANT!!!

Remember: You Must Know Your Stuff

Cognitive control

Executive attention

Cognitive inhibition

Conflict resolution

Cognitive stability

Interference resistance

Task focus

Simon

Flanker

Flanker

Stroop

1 Facilitation 1 Interference

1 Facilitation 1 Interference

Automatic S-R map 2 Facilitations

2 Interferences

THEORY IS IMPORTANT!!!

Remember: You Must Know Your Stuff

Analyze your task first, then your data!

Before asking where and when sth is happening in the BRAIN, ask <u>WHAT</u> is happening in the <u>MIND</u>, then verify your idea by looking at its effect on the <u>BEHAVIOR</u>

Mind → Behavior → Brain
Theory → Beh Exp → Brain Exp

THEORY IS IMPORTANT!!!

Remember: You Must Know Your Stuff

Mind → Behavior → Brain

Theory \rightarrow Beh Exp \rightarrow Brain Exp

3 pre-registered studies: osf.io/jkq9n/

THEORY IS IMPORTANT!!!

Remember: You Must Know Your Stuff

Mind → Behavior → Brain

Theory → Beh Exp → Brain Exp

3 pre-registered studies: osf.io/jkq9n/

THEORY IS IMPORTANT!!!

Remember: You Must Know Your Stuff

Mind → Behavior → Brain

Theory → Beh Exp → Brain Exp

3 pre-registered studies: osf.io/jkq9n/

Let's Fix this Mess (6) – Use Better Manipulations

Test your hypotheses (but do it better! Fine-grained effects)

BIKE

Semantic distance (?)

Let's Fix this Mess (6) – Use Better Manipulations

Test your hypotheses (but do it better! Fine-grained effects)

Let's Fix this Mess (6) – Use Better Manipulations

Test your hypotheses (but do it better! Fine-grained effects)

Let's Fix this Mess (7) – Now... the Brain!

INCREASE SNR (AND RELIABILITY/VALIDITY) OF YOUR MEASURES BY

1) USING STRONG, THEORY-DRIVEN, FINE-GRAINED MANIPULATIONS

2) WHILE CONTROLLING CONFOUNDS → MLM

BUT... Remember the EEG localization problem?

Single-trial ERPs: high spatio-temporal variability

- → It's hard to distinguish process-specific ERPs
- → It's hard to define spatio-temporal ROIs (but see this)

Do whole-brain (mass-univariate) analyses!
But correct them for multiple comparisons
github.com/Mensen/ept_TFCE-matlab

Let's Fix this Mess (7) – Now... the Brain!

<u>Do whole-brain (mass) MLM analyses!</u> But correct them for multiple comparisons

Fixed
Random, by-SS
Random, by-Item

But it takes forever to run 10⁷ complex MLM models! Use ImeEEG! (PrePrint, GitHub, OSF, Slides)

lmeEEG: Mass linear mixed-effects modeling of EEG data with crossed random effects

Antonino Visalli^{a,*}, Maria Montefinese^b, Giada Viviani^{c,d}, Livio Finos^{d,e}, Antonino Vallesi^{c,d}, Ettore Ambrosini^{c,d,f}

THANKS!

osf.io/rgku3

MARIA MONTEFINESE

ANTONINO VISALLI

GIADA VIVIANI

IRENE DI PIETRO

osf.io/bkpa8

osf.io/z4fbr

osf.io/r98mv

osf.io/wb5vj