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The Cornerstone of Credible (Neuro)science

Accurate and Precise Measurement

* Data interpretation
* Reproducibility of findings
e Cross-study comparisons
* Generalize results
* Creation of theoretical models

Scientific progress



From Noise to Insight: A (Neuro)scientist's Quest

The Promise: The Reality:
We can unlock wvs. It’s messy...
brain secrets! Very messy

The Goal:

Credible, reproducible (neuro)science

The Challenge:
Separate signal from noise

The Quest:
From messy data to reliable insights



What are we
measuring?!?



fMRI Measures: Seeing the Lights, Missing the Action

t value

“Activation”
£

Understanding function

We know something is happening...
...but not what’s going on!!!




The EEG Paradox: More Direct, yet More Ambiguous

“Activation”
=+

Understanding function

We know something is happening...
...but not what’s going on!!!



The Brain Signals Localization Problem(s)

SPACE PMd = COND
PMV\.\"" d A
\- PROCESS/ABILITY
B -
TIME 1) What'’s the function of that

region/wave?




Where is the region X?
(e.g., the Broca’s area)



When is the wave X?
(e.g., the P3 ERP)



The Brain Signals Localization Problem(s)

We don’t even know how do define/isolate “regions” and “waves”!!!

Kong et al. 2018

Kong et al. 2021
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Why do we have
a brain?



INTERNAL
WORLD

Memories
Goals

EXTERNAL
WORLD

Senses

EXTERNAL
WORLD

Actions
(Language)




List the cognitive functions
that are important (to survive)

BT 0 o SR S W I



Have you ever heard of
Functional Connectivity Networks?
What do they mean (functionally)?

List them

B O 1 = U



List the cognitive ful NOW CONNECT THEM! You ever heard of
that are important (tc SOMETHING STRANGE? Connectivity Networks?

vviue we i€y mean (functionally)?
List them

fr 0 S W W N
OONGOUDWNER



The Brain Signals Amplitude Problem

COND
A

PROCESS/ABILITY
X

1) What'’s the function of that
region/wave?

2) Larger signals not always mean

stronger/better process/ability!




LET'S BEGIN, BUT Flli?;l’

" LET'S PLAY A GAME


https://www.labvanced.com/player.html?id=61423

Does it Measure Motor
Inhibition? How/Why?




Interpretations Come with Implications!

F’I\/Id\‘ B Test your interpretations!
7 IPS
PMV\ : NoGo - Go NoGo - Go
i\
-

Motor Inhibition Motor Inhibition

J NoGo P3

M Motor Inhib.




But Methodology is Key! You Must Know Your Stuff

Prepotent motor activity and inhibitory control demands in
different variants of the go/no-go paradigm
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https://onlinelibrary.wiley.com/doi/10.1111/psyp.12871

Interpretations Come with Implications!

F’I\/Id\‘ B Test your interpretations!
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Interpretations Come with Implications!

F’I\/Id\‘ B Test your interpretations!

IPS
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0 SS’ NoGo P3 amplitude (uV) 25




Interpretations Come with Implications!
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Guess the correlation!

Nearness to the equator and °C (U.S.A.)  Weight and height for adults (U.S.A.)

N = 20000 N = 17000
4 - 4 -
2 . 2 i
0 . | | | 0 . | | |
) _ ) |
4 | 4 |



Guess the correlation!

Nearness to the equator and °C (U.S.A.)  Weight and height for adults (U.S.A.)

N = 20000 N = 17000
r=.60 r=.44

4 . 4

2 2

O | | 0 | |
-2 -2

R*=0.3557
4 . -4 .



Lost in Translation: Brain-Behavior Predictions

Reproducible brain-wide association studies
require thousands ofindividuals

PROCESS/
ABILITY X
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Brain-Behavior Predictions: Too Good to be True?

Reproducible brain-wide association studies
require thousands ofindividuals

'yy = Ryy VIxx Ty
1,000}

Count

Required sample size




Interpretations Come with Implications!

Test your interpretations! (but do it better: multilevel modelling)

SS-level regression Group-level test
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Let’s Start Again! How to Fix this Mess?!?

INCREASE SNR
(AND RELIABILITY)
(AND VALIDITY)
OF YOUR BRAIN AND BEHAVIOR
MEASURES




SS01
SS02
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Let’s Fix this Mess (1)
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Let’s fix this Mess (1) — Increase Number of Trials
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Let’s fix this Mess (1) — Increase Number of Trials
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Let’s Fix this Mess (1) — Increase Number of Trials

Jsing precision approaches to improve brain-
be ha\/| Or Dred |CJ[| Oﬂ (A) Within-subject variability (B) Between-subject variability

Hyejin J. Lee ®@ 2*, Ally Dworetsky ', %“ %
Nathan Labora’, and Caterina Gratton > % . %
Ai m for 80_120 é Stabilizing point =1000 trials E True estimate
tria IS/CO“ dition g E Number of trials S Within-subject variability
for W/ in-SS studies (C) Corretation Increasing amounts of within-subject variability

r=0.97

NB: Brain measures
are way noisier! _ 2 _
9 GOOd prePrOCESSing Brain features Brain features Brain features Brain features

Behavior
Behavior
Behavior
Behavior



https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(24)00229-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1364661324002298%3Fshowall%3Dtrue

Let’s Fix this Mess (2) — Preprocess your Brain Measures

INCREASE SNR (AND RELIABILITY) OF YOUR EEG DATA
WITH A GOOD PREPROCESSING

1) Use an evidence-based, reproducible preprocessing pipeline
sccn.ucsd.edu/wiki/Makoto's preprocessing pipeline

2) Perfect the art of ICA-based artifact removal
labeling.ucsd.edu/tutorial

3) Use the EEGLAB TBT plugin
(for Trial-By-Trial epoch rejection without losing trials)
github.com/mattansb/TBT



https://labeling.ucsd.edu/tutorial
https://github.com/mattansb/TBT
https://sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline

PROCESS/
ABILITY X

0.1 -
0.08
0.06
0.04

0.02

Let’s Fix this Mess (3) — Control your Confounds

Brain and Behavior signals are affected by tens of confounds

BRAIN
SIGNAL
r 3

r

A 4
BEHAV.
SIGNAL

10

20

30

1)

2)

3)

4)

Time-On-Task effects
(eg, fatigue/boredom, learning)

Low-level Stimulus/Response features
(eg, visual hemifield, responding hand)

Sequential effects of performance
(eg, post-error slowing, trial-by-trial autocorr)

Sequential effects of low-level S/R features
(eg, Stimulus and/or Response repetition)

Sequential effects of experimental conditions
(eg, condition repetition, priming)
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Let’s Fix this Mess (3) — Control your Confounds

Brain and Behavior signals are affected by tens of confounds
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(eg, post-error slowing, trial-by-trial autocorr)

Sequential effects of low-level S/R features
(eg, Stimulus and/or Response repetition)

Sequential effects of experimental conditions
(eg, condition repetition, priming)



Let’s Fix this Mess (3) — Control your Confounds

INCREASE SNR (AND RELIABILITY/VALIDITY) OF YOUR MEASURES
BY CONTROLLING CONFOUNDS

1) Balance your experimental design FOR EVERYTHING
(methodological control)

2) Create your trial list to AVOID/BALANCE ANY SEQUENTIAL EFFECT
(methodological control)



How do you decide
the order of trials?



Let’s Fix this Mess (3) — Control your Confounds

2.1a) Use MIX to avoid/balance  Mix, a program for pseudorandomization

Seq uentlal Effe Cts MAARTEN van CASTEREN and MATTHEW H. DAVIS

MRC Cogmition and Brain Sciences Unit, Cambridge, England

2.1b) Use MATCH to balance Match: A program to assist in matching the
conditions of factorial experiments

covariates
(both here) AN VA AT T DA
2.1c) Use Excel Solver to do both e
(evolutionary optimizer) m e cgrmens |
[File -> Options -> Add-ins -> S - Tt :
Excel add-ins -> Solver] sl anayss R


https://drive.google.com/drive/folders/1rJc_FEK2EG29fGuVHf617l7q8KcVP9oR?usp=drive_link
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Let’s Fix this Mess (3) — Control your Confounds

LL
LR
RL
RR

o1 01 01 O

2.2) Compute trial-by-trial
probabilities of experimental
confounds (and effects)

1

=
by

0.75
T o5
v Hierarchical
0.25 . .
Gaussian Filter
0 (Bayesian observer)
0 50 100

Trial

github.com/translationalneuromodeling/tapas



https://github.com/translationalneuromodeling/tapas

Let’s Fix this Mess (3) — Control your Confounds

INCREASE SNR (AND RELIABILITY/VALIDITY) OF YOUR MEASURES
BY CONTROLLING CONFOUNDS

1) Try to balance your experimental design FOR EVERYTHING
(methodological control)

2) Try to balance your trial list FOR EVERY SEQUENTIAL EFFECT
(methodological control)

3) Include these confounds in your statistical model!
(statistical control)



Let’s Fix this Mess (3) — Control your Confounds

A comparison between different variants of the spatial Stroop
task: The influence of analytic flexibility on Stroop effect estimates
and reliability

Giada Viviani'? - Antonino Visalli' - Livio Finos** - Antonino Vallesi'? - Ettore Ambrosini'~*

Paper
1-
0.9 A
RT ~ Trial*Block + 0.8 -
hStim + vStim + hResp + vResp + 0.7 -
preRT + PostERR + 0.6 1
P(Stim) + P(Resp) + P(Resp|Stim) + & zz
P(Cong) + 0:3 | RT
Task+Cong + o . InRT
(Task+Cong|SSID) 01 - iRT
ot 4 4 |

SES S SO SO SO SO

Peripheral Perifoveal Navon Figure-Ground Flanker Saliency


https://link.springer.com/article/10.3758/s13428-023-02091-8

Let’s Fix this Mess (4) — Increase Your Signal

INCREASE SNR (AND REL/VAL) OF YOUR MEASURES
BY IMPROVING YOUR MANIPULATIONS
- Use good experimental paradigms

THEORY IS IMPORTANT!!!
Remember: You Must Know Your Stuff

The Stroop legacy: A cautionary tale on methodological issues
and a proposed spatial solution

Incongruent

Congruent

Giada Viviani'? - Antonino Visalli® - Maria Montefinese® - Antonino Vallesi'? - Ettore Ambrosini'2*

Paper


https://link.springer.com/article/10.3758/s13428-023-02215-0

Let’s Fix this Mess (4) — Increase Your Signal
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Let’s Fix this Mess (4) — Increase Your Signal

THEORY IS IMPORTANT!!! >2 :
2 Arbitrary S-R map
Remember: You Must Know Your Stuff L 1\\ 1 Facilitation
s ¥ 1 Interference
/ Cognitive control \ Simon ‘ T w e
Executive attention 22
2 Arbitrary S-R map

Cognitive inhibition e
& ii 1 Facilitation

14 |47~} 1Interference

1.2

Conflict resolution Flanker ‘

Cognitive stability
Interference resistance 55

Task focus Stroop 2 I\ Automatic S-R map
\ / ‘ -8 ¥ 2 Facilitations

1.6
1.4 2 Interferences

1.2

Performance (Resp/s)

Con N Inc



Let’s Fix this Mess (5) — Decompose Your Task/Beh Signal

THEORY IS IMPORTANT!!!
Remember: You Must Know Your Stuff

Analyze your task first, then your data!

Before asking where and when sth is happening in the BRAIN,
ask WHAT is happening in the MIND,
then verify your idea by looking at its effect on the BEHAVIOR

Mind = Behavior = Brain
Theory = Beh Exp = Brain Exp



Let’s Fix this Mess (5) — Decompose Your Task/Beh Slgnal

THEORY IS IMPORTANT!!!
Remember: You Must Know Your Stuff
Mind = Behavior = Brain
Theory = Beh Exp - Brain Exp

b |
S TASK B

© v | e

£ P

-% 1/C (S-R map) é Observed
Q.

SLLLLLLLLLLLLL LI LT » R TASK A

Con N Inc |Con N Inc |Con N Inc

B AB (R) AB (S) AB (SR)

3 pre-registered studies: osf.io/jkq9n/



https://osf.io/jkq9n/

Let’s Fix this Mess (5) — Decompose Your Task/Beh Slgnal

THEORY IS IMPORTANT!!!
Remember: You Must Know Your Stuff
Mind = Behavior = Brain
Theory = Beh Exp - Brain Exp

o

°
) Observed \\
G assnsanssnnnnnnnnnnns » R TASK A Predicted

N
[ ]

1/C (S-R map)

-- Performance 2
Resp/s

Con N Inc |Con N Inc |Con N Inc

B AB (R) AB (S) AB (SR)

3 pre-registered studies: osf.io/jkq9n/



https://osf.io/jkq9n/

Let’s Fix this Mess (5) — Decompose Your Task/Beh Slgnal

THEORY IS IMPORTANT!!!
Remember: You Must Know Your Stuff
Mind = Behavior = Brain
Theory = Beh Exp - Brain Exp

S * R TASK B
®
) Observed .\
G assnsanssnnnnnnnnnnns » R TASK A Predicted

N

1/C (S-R map)

-- Performance 2
Resp/s

Con N Inc |Con N Inc |Con N Inc

B AB (R) AB (S) AB (SR)

3 pre-registered studies: osf.io/jkq9n/



https://osf.io/jkq9n/

Let’s Fix this Mess (6) — Use Better Manipulations

Test your hypotheses (but do it better! Fine-grained effects) |o

—=
o)

=
>

=
N

Performance (Resp/s)

Related Unrelated

BIlIKE

Semantic distance (?)
—



Let’s Fix this Mess (6) — Use Better Manipulations

Test your hypotheses (but do it better! Fine-grained effects) |&
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Let’s Fix this Mess (6) — Use Better Manipulations

Test your hypotheses (but do it better! Fine-grained effects) |&
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trial ndex sofed by RT

potential (muV)

Let’s Fix this Mess (7) — Now... the Brain!

INCREASE SNR (AND RELIABILITY/VALIDITY) OF YOUR MEASURES BY
1) USING STRONG, THEORY-DRIVEN, FINE-GRAINED MANIPULATIONS
2) WHILE CONTROLLING CONFOUNDS - MLM

BUT... Remember the EEG localization problem?

Single-trial ERPs: high spatio-temporal variability

— It’s hard to distinguish process-specific ERPs

- It’s hard to define spatio-temporal ROIs
(but see this)

Do whole-brain (mass-univariate) analyses!
‘ But correct them for multiple comparisons
" tom e github.com/Mensen/ept TFCE-matlab

- -
(= %] =] LE [ = = LR

1=

500 1000


https://cns.hkbu.edu.hk/RIDE.htm
https://github.com/Mensen/ept_TFCE-matlab

Let’s Fix this Mess (7) — Now... the Brain!

Do whole-brain (mass) MLM analyses!
But correct them for multiple comparisons

Random, by-SS
Random, by-ltem

B - - - I - T T N FUR X

=2k E
=
>

—
ra

But it takes forever to run 10’ complex MLM models!
Use ImeEEG! (PrePrint, GitHub, OSF, Slides)

ImeEEG: Mass linear mixed-effects modeling of EEG data with crossed
random effects

Antonino Visalli * | Maria Montefinese ® Giada Viviani ©¢, Livio Finos ¢, Antonino Vallesi
Ettore Ambrosini ©%’

3


https://www.biorxiv.org/content/10.1101/2023.01.18.524560v4
https://github.com/antovis86/lmeEEG
https://osf.io/kw87a/
https://psicostat.dpss.psy.unipd.it/files/2024-04-19_visalli.pdf

What’s the
take-home message?



&]:

=

THANKS!

osf.io/rgku3

Of%

MARIA MONTEFINESE ANTONINO VISALLI GIADA VIVIANI IRENE DI PIETRO

osf.io/bkpa8 osf.io/z4fbr osf.io/r98mv osf.io/wh5vj
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