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Abstract

Measurement invariance—the notion that the measurement properties of a scale are equal across groups,
contexts, or time—is an important assumption underlying much of psychology research. The traditional
approach for evaluating measurement invariance is to fit a series of nested measurement models using multi-
ple-group confirmatory factor analyses. However, traditional approaches are strict, vary across the field in
implementation, and present multiplicity challenges, even in the simplest case of two groups under study.
The alignment method was recently proposed as an alternative approach. This method is more automated,
requires fewer decisions from researchers, and accommodates two or more groups. However, it has different
assumptions, estimation techniques, and limitations from traditional approaches. To address the lack of ac-
cessible resources that explain the methodological differences and complexities between the two approaches,
we introduce and illustrate both, comparing them side by side. First, we overview the concepts, assumptions,
advantages, and limitations of each approach. Based on this overview, we propose a list of four key consid-
erations to help researchers decide which approach to choose and how to document their analytical decisions
in a preregistration or analysis plan. We then demonstrate our key considerations on an illustrative research
question using an open dataset and provide an example of a completed preregistration. Our illustrative
example is accompanied by an annotated analysis report that shows readers, step-by-step, how to conduct
measurement invariance tests using R and Mplus. Finally, we provide recommendations for how to decide
between and use each approach and next steps for methodological research.

Translational Abstract

Measurement invariance refers to the notion that a scale measures a construct the same way across dif-
ferent groups, contexts, or time. If a personality scale measures personality differently for men and
women, for example, then men and women cannot be compared on that personality scale because any
observed differences could simply be measurement differences. The traditional approaches for assessing
measurement invariance use confirmatory factor analyses, require statistical expertise, and become prob-
lematic when many groups are tested. The alignment method for assessing measurement invariance is a
recently developed alternative to the traditional approaches which addresses some of their disadvantages
and works well with many groups but has its own assumptions and limitations. In this tutorial, we intro-
duce and illustrate both approaches for testing measurement invariance to help researchers decide which
approach to choose and how to document their analytical decisions in a preregistration or analysis plan.
First, we overview the concepts, assumptions, advantages, and limitations of each approach. Based on
this overview, we propose a list of four key considerations to help researchers decide which approach to
choose. We then illustrate how to use our key considerations by answering a mock research question
using an open dataset, which is accompanied by an example of a completed preregistration. We also
provide an annotated analysis report with code that shows readers, step-by-step, how to conduct measurement
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invariance tests using statistical programs R and Mplus. Finally, we provide recommendations for how to
decide between and use each approach and next steps for methodological research.

Keywords: measurement invariance, measurement equivalence, multiple-group confirmatory factor analysis,

alignment, differential item functioning
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Measurement invariance (also known as measurement equivalence)
refers to the notion that the psychometric properties of a scale are equal
(i.e., invariant or equivalent) across groups and/or measurement occa-
sions like contexts or time. Without it, interpreting group differences
raises questions: Is an observed difference across groups due to a
group difference on the construct or due to differences in how the scale
is measuring the construct? Ignoring measurement noninvariance can
lead to incorrect conclusions about comparisons between groups, such
as erroneously concluding one group is higher on a construct than the
other (Chen, 2008; Steinmetz, 2013). Thus, measurement invariance is
important to consider in a variety of contexts, including longitudinal
research, research on diverse groups, cross-cultural psychology includ-
ing translated instruments, and in experimental designs to evaluate
assumptions to ensure comparability across treatment and control
groups. As such, it is broadly applicable to many areas of psychology.

There are a variety of psychometric methodologies for assessing
measurement invariance across two or more groups, with most
using model comparisons in confirmatory factor analyses (CFA) or
item response theory (IRT)' to test the equality of measurement
properties across groups or time (for an overview, see Millsap,
2011). We will refer to this model comparison approach as the tra-
ditional approach. To address challenges in applying the traditional
approach, Asparouhov and Muthén (2014) developed an alterna-
tive, more automated approach known as the alignment method.

The alignment method makes no assumptions about the number
of groups and can accommodate two or more groups easily. Simula-
tion studies showed good performance in two-group cases for recov-
ering factor model parameters (i.e., unbiased point estimates, and
near or above 95% coverage; Asparouhov & Muthén, 2014). The
alignment method is also ideal for smaller numbers of groups for
which the data would not satisfy assumptions for a random effects
approach (e.g., multilevel measurement models which require many
groups; see Muthén & Asparouhov, 2018). Thus, the alignment
method can be implemented as an alternative or accompanying
method to traditional approaches when there are only two groups.
Despite the potential for the alignment method’s use with two
groups, it has generally not been considered as a two-group alterna-
tive by applied researchers and use thus far has focused on many-
groups cases (Lomazzi, 2018; Muthén & Asparouhov, 2018). As of
writing, there is no guidance or side-by-side comparison of the two
approaches for the two-group case. The alignment method has also
only very recently received a comprehensive methodological com-
parison to the traditional approach with moderate numbers of groups
(see Magraw-Mickelson et al., 2020). Few accessible resources exist
that aim to assist substantive researchers in considering when the
alignment might be better suited for certain research contexts.

The purpose of this tutorial is to provide a nontechnical introduction
to two different approaches to measurement invariance testing, with a
focus on testing two groups. Researchers can use this as a resource to
assist in planning, choosing between, implementing, and interpreting

either approach. We aim to facilitate the ease of appropriately using
these methods as well as support transparent practices for the planning
and reporting of measurement invariance testing consistent with Trans-
parency and Open Practices Guidelines adopted by American Psycho-
logical Association journals in 2021 (Center for Open Science, 2020).
We will first explain and compare the conceptual basis of each method
and highlight their key similarities and differences in assumptions and
implementation. We will then provide an illustrative preregistered data
analysis example of measurement invariance testing using both methods
on an open cross-national dataset. Through this example, we will offer
recommendations on how researchers can appropriately decide between
and then use either approach. We will close with recommendations for
the methods and suggest next steps for methodological research.

Approaches to Measurement Invariance Testing in
Psychology

Confirmatory Factor Analysis: A Primer

CFA is fundamental to both the traditional factor analytic
approaches and the alignment method. First, consider the confirmatory
factor analysis model for continuous items in one group, expressed in
notation used by Asparouhov and Muthén (2014) for ease of reference:

Yip :Vp+7bpni+€ip (D

In Equation 1, the factor model is represented as a linear regres-
sion of the items on the factor (or latent variable). Here, i =
1,...,1 where [ is the total number of people (or observations)
and p = 1,..., P where P is the total number of items (or indica-
tors). y;, is the observed score for person i on item p, v, is the
intercept for item p, }, is the factor loading for item p, 1; is a fac-
tor score for person i, and €;, is the residual for person i of their
observed score of item p (which is y;,).

The multiple-group CFA (MGCFA) extends the one-group
CFA to accommodate multiple groups:

Yipg = Vpg T+ kﬂgnig + E€ipg (@)

Equation 2 shows that MGCFA is represented in the same way
as a one-group CFA with the addition of a group subscript g to
indicate group membership, where g = 1,...,G and G is the total
number of groups. Furthermore, we assume that the residuals €,
are normally distributed with a mean of 0 and some variance 0,,

VIRT is used specifically for binary or polytomous indicators and
emphasizes identifying non-invariant items (known as differential item

Sfunctioning). In this tutorial, we focus on CFA due to the propensity of

Likert-type scales in psychology that are commonly treated as continuous
rather than polytomous. Item scores are also usually combined into
composites (e.g., sum scores or averages) for analysis.
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and that the factors m;, is normally distributed with some group-
specific factor mean o, and variance \V,.

Traditional Factor Analytic Approaches

The traditional factor analytic approaches involve conducting a
series of MGCFAs and using them to test the equality of measure-
ment properties (i.e., factor structure, loadings, intercepts, and
uniquenesses/residual variances) across groups in increasingly
strict stages. The equality tests for model parameters are con-
ducted on like items, meaning the same items across groups (e.g.,
Item 1 in Group 1 vs. Item 1 in Group 2). Hence, under these
approaches, measurement invariance is a hierarchical property,
and the level of measurement invariance for a measure is deter-
mined by the best comparatively fitting model. The fit of the
MGCFA corresponding to each level of measurement invariance
is compared to the next sequentially, starting from the bottom of
the hierarchy and compared with the level exactly above it (i.e.,
configural vs. metric, metric vs. scalar, scalar vs. strict). Below,
we provide a conceptual overview of these levels as per van de
Schoot et al. (2012), Muthén and Asparouhov (2018), and Bialo-
siewicz et al. (2013). Then in our illustrative data analysis exam-
ple, we present testing each level, for which accompanying data
analysis code is reported in the supplementary materials on https:/
osf.io/3p7n9/.

Figure 1 shows the four hierarchal levels of measurement invar-
iance: configural, metric, scalar and strict (Horn & McArdle,
1992; Meredith, 1993). The first and lowest level of the hierarchy
is configural invariance (Horn & McArdle, 1992), which means
that the configuration of the indicators to their factors is the same
across groups—that is to say, the number of latent constructs and
the specific items loaded onto them are the same across groups.
Configural noninvariance precludes comparisons of a scale’s
scores (latent or observed) across groups: Having different num-
bers or configurations of items to factors plainly suggests that dif-
ferent constructs are being measured in different groups and
scores from different constructs are not comparable. Configural
noninvariance may reflect a theoretical inconsistency such that fur-
ther research is required to understand the nature of the construct,
including the content of the construct and the construct’s meaning
to different groups. This type of inquiry is well suited for qualita-
tive or mixed methods research with the populations of interest.

Figure 1
Hierarchy of the Four Levels of Measurement Invariance

Strict

(uniquenesses)

Partial Scalar

(item intercepts)

Metric
(factor loadings)

Configural
(factor structure)

Following configural invariance, metric invariance (Horn &
McArdle, 1992; also known as weak [factorial] invariance as per
Meredith, 1993) is the next level of measurement invariance. In
addition to equality of the factor model configuration across
groups by configural invariance, achieving metric invariance
means that the specific statistical relationships between the scale’s
items and their associated latent constructs also stay the same—
that is to say, factor loadings are equal across groups. Metric non-
invariance can bias observed factor variances, factor covariances,
and factor means (French & Finch, 2016; Shi et al., 2019; Yoon &
Millsap, 2007), which can lead to erroneous conclusions on down-
stream statistical tests.

Typically, after metric invariance is tested, scalar invariance
(Steenkamp & Baumgartner, 1998; also known as strong [facto-
rial] invariance as per Meredith, 1993) is the next level of mea-
surement invariance. In addition to equality of the factor model
across groups by configural invariance and equality of factor load-
ings across groups by metric invariance, scalar invariance is
achieved when the meaning of the levels of item responses are
also equal across groups—that is to say, both the factor loadings
and intercepts are equal across groups. If scalar invariance is
achieved, then groups can be compared by their observed or latent
scores for the construct; the former is the most frequent applica-
tion in psychological research. Scalar noninvariance precludes any
observed mean comparisons; even one noninvariant intercept can
bias the results of a mean comparison (Steinmetz, 2013).

Finally, following scalar invariance is strict invariance (Meredith,
1993; also known as error variance invariance as per Steenkamp &
Baumgartner, 1998; or full uniqueness measurement invariance as
per van de Schoot et al., 2012), the strictest level of measurement
invariance. Strict invariance is achieved when the unexplained var-
iance for each item is equal across groups. This would imply identi-
cal measurement at the item level of the construct across groups.
Because strict invariance is complete equivalence of the measure-
ment model, it guarantees comparability of a scale across groups, but
it has been considered too strict achieve in practice. There is some
disagreement on whether scalar invariance is sufficient for mean
comparisons in general (DeShon, 2004; Lubke et al., 2003), but sca-
lar invariance remains the commonly accepted standard of measure-
ment invariance in psychology to permit the use of observed scores.

The evaluations of fit and model selection from these levels are
like other applications of confirmatory factor analysis, such as chi-
square tests, the comparative fit index (CFI), and root mean squared
error of approximation (RMSEA; e.g., Chen, 2007; van de Schoot
et al., 2012). For instance, if a chi-square model fit test comparing
two invariance models is not statistically significant, then the
stricter higher-level invariance model is supported because it has
more equality constraints on measurement properties (fewer param-
eter estimated freely) and is therefore more parsimonious than the
lower-level invariance model. Although confirmatory factor analy-
sis forms the foundation of the approaches that will be discussed in
this tutorial, the various applications of this approach fall under a
family because there is significant variability in how CFAs have
been used to assess measurement invariance.

Partial Invariance

Although scalar invariance is the commonly accepted level of
invariance for comparing observed means, it is also in itself still a
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strict criterion that is rarely achieved in practice (van de Schoot et
al., 2015), in part because traditional factor analytic approaches
test exact equality of all model parameters. A poorly fitting scalar
invariance model, for example, does not necessarily imply that all
the items are noninvariant; only one noninvariant item in the scale
could be enough to result in poor fit of the model. This reasoning
similarly applies to the metric and strict invariance models. Ac-
commodating the possibility that parts of a scale may achieve
measurement invariance is the core idea behind partial invariance.

Under partial invariance, the model in which measurement
invariance fails is examined more closely and statistically adjusted
to systematically identify and specify a model in which the spe-
cific parameter estimate(s) that are noninvariant are estimated
freely (Byrne et al., 1989; Steenkamp & Baumgartner, 1998).
Researchers may wish to identify the noninvariant parameter esti-
mate(s) for specific item(s) to remove them from the measure in a
scale development study, or they may wish to retain the item(s) on
the measure but also estimate a model in which they are estimated
freely. A correctly specified partial invariance model can statisti-
cally adjust for noninvariance and compare groups on latent (but
not observed) means or variances: Once noninvariant item param-
eters are identified, the invariant items are used as anchors (known
as anchor items or referent items), which correctly sets the scale
across groups and allows for unbiased estimates of latent means
and variances (Byrne et al., 1989).

There are different methods for identifying which items are non-
invariant, which can include backward selection via factor-ratio
tests, modification indices, and forward selection (Jung & Yoon,
2016). In all approaches, the measurement invariance model is
adjusted by removing the equality constraints for the identified
noninvariant items. The factor-ratio test by Rensvold and Cheung
(1998) involves testing models representing each possible combi-
nation of anchor item and potentially noninvariant item(s) against
the configural invariance model, where significant differences in
model fit (e.g., chi-square ratio tests) indicate that the new model
may contain noninvariant items. Backward selection, as shown by
Yoon and Millsap (2007), involves using the largest modification
index on a fully constrained metric or scalar invariance model and
relaxing the constraints until the largest modification index is no
longer statistically significant. Forward selection, an approach pro-
posed by Jung and Yoon (2016), is analogous to backward selec-
tion but tests in order of additions of constraints rather than
removals and simplifies the use of multiple tests in data analysis
with confidence intervals.

Researchers should consider several points when using partial
invariance models. First, we recommend that partial invariance
models only be used to make latent comparisons and not justify
comparisons with observed scores. Simulation studies indicate that
noninvariant items bias observed score comparisons even when a
partial invariance model can be specified to adjust latent compari-
sons (e.g., Chen, 2008; Guenole & Brown, 2014; Hsiao & Lai,
2018; Steinmetz, 2013). Second, there is considerable contention
and uncertainty regarding how many noninvariant items are accept-
able in a partial invariance model to make valid group comparisons
at the latent level, and this problem requires future investigation.
On one hand, it is generally agreed that latent comparisons are stat-
istically justified with just one invariant item in addition to the
anchor item that is assumed to be invariant because they set a com-
parable scale across groups (Byrne et al., 1989; Steenkamp &

Baumgartner, 1998). On the other, it is unclear how many noninvar-
iant items are acceptable for group comparisons to be conceptually
justified in that the originally operationalized construct has the
same meaning as what is being compared with the partial invari-
ance model. Is a construct measured by an entire scale across
groups the same as the construct measured with two invariant
items? Is a construct measured by five highly noninvariant items
across groups the same as the construct measured by the same five
items with only slight noninvariance? From this standpoint,
researchers have suggested that at least a majority of items should
be noninvariant, confidence decreases as the number and degree of
noninvariant items increases, and analyses should be supplemented
by qualitative theory-based evaluation of the noninvariant items
whenever possible (e.g., Chen, 2008; Shi et al., 2019; Steenkamp &
Baumgartner, 1998; Vandenberg & Lance, 2000).

The Alignment Approach

Asparouhov and Muthén (2014) developed the alignment method
as an alternative to traditional approaches for handling measure-
ment noninvariance when the data structure has many groups. We
outline the conceptual basis of the alignment method as described
by Asparouhov and Muthén (2014), Muthén and Asparouhov
(2018), and Lomazzi (2018).

Under the traditional factor analytic approaches, mean compari-
sons in observed scores across groups are justified if the factor
model configuration, factor loadings, and item intercepts are
equivalent across groups (i.e., scalar invariance is achieved).
Researchers can have different goals when evaluating measure-
ment invariance, but often the goal is to make unbiased factor
mean comparisons. The alignment approach works to address this
by producing a factor model that is sufficient to make factor mean
comparisons—that is, a model with factor loadings and item inter-
cepts that are as close to equivalent as possible. Framed another
way, the alignment approach assumes that measurement noninvar-
iance can be minimized, so minor measurement differences (ap-
proximate measurement invariance) present at the item levels
across groups are assumed and adjusted for, that is, “aligned.”

Alignment Optimization Procedure

Here, we describe the alignment optimization procedure in a non-
technical fashion (for mathematical details, see Appendix A; for
complete details, see Asparouhov & Muthén, 2014). The alignment
optimization procedure involves two models—the original model
and the optimized model—which we will denote as MO and M1,
respectively. MO is produced by transforming a baseline configural
model which assumes the same configuration of items to factors
across groups, and M1 is produced by optimizing MO. The align-
ment optimization procedure produces M1 by minimizing the dif-
ferences between factor loadings and item intercepts across groups.
The factor means and variances that correspond to M1 are then
used to make group comparisons. Recall that scalar invariance in a
traditional MGCFA requires invariant factor configuration, factor
loadings, and item intercepts. The logic of the alignment is that an
adequate configural model that has minimal differences in factor
loadings and intercepts across groups (i.e., has a majority of factor
loadings and intercepts that are approximately equal) should be
good enough to make factor mean comparisons. There are no load-
ing, intercept, or residual equality constraints placed on the
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configural model, so model fit of the original MO is unaffected by
alignment optimization and equal to the model fit of M1.

The optimization procedure works in a similar manner to rotation
algorithms used in exploratory factor analyses. Rotation algorithms
are designed to extract factors from items that load highly on those
factors, but not on others (i.e., to achieve a solution with simple
structure and no cross loading). To achieve a simple structure, rota-
tion algorithms maximize big loadings and minimize small loadings
such that items load highly on one factor, but not others. The align-
ment optimization works similarly to achieve a different kind of
simple structure: one that minimizes the differences between load-
ings and intercepts across groups. Just as rotation attempts to select
a loading matrix with large loadings on one factor and small load-
ings on the others, the alignment attempts to find a solution in
which most item parameters are approximately equal and there are
only a few larger intercept/loading differences across groups.

Overall, the alignment approach is not necessarily a measure-
ment invariance testing procedure, but is rather a treatment of
measurement invariance as an optimization problem: It produces
a factor model that is good enough to make unbiased latent mean
comparisons by selecting factor means and variances that mini-
mize measurement noninvariance of the item-level parameters.
This is done such that most factor loadings and item intercepts
are approximately invariant, with a minority of item parameters
that have substantial differences across groups. As a result, there
are enough invariant items to use this factor model to produce
aligned latent scores that are comparable across groups without
achieving exact scalar invariance or needing to identify a partial
invariance model.

Alignment Item Testing Procedure

After the alignment procedure produces the optimized model
M1, there is a separate ad-hoc item-level testing algorithm. This
algorithm produces item-level significance tests and noninvariance
effect size estimates for all possible pairs of factor loadings and
intercepts across groups. Given possibly large numbers of compar-
isons, these significance tests are interpreted at the .001 level of
significance. The noninvariance effect size estimates, denoted as
R? values by Asparouhov and Muthén (2014), range from 1.00,
indicating complete invariance, to 0, indicating noninvariance.
This testing algorithm is largely automated and does not require
researcher input, contrasting with the traditional approach which
involves manual model specification for partial invariance.

Applying the Alignment Method

There are four key points for applying the alignment method due
to how the optimization procedure works. First, the alignment
method does not optimize uniquenesses” because the primary goal is
to estimate unbiased latent factor means for valid group comparisons.
Second, configural invariance is an assumption of alignment optimi-
zation because only factor loadings and intercepts are optimized in
the procedure and an adequate configural model MO is required for
this process. Third, because the optimization procedure works analo-
gously to rotation methods in exploratory factor analyses, the pres-
ence of a few large noninvariant parameters and many approximately
invariant parameters is another assumption of alignment optimiza-
tion. Fourth, the alignment optimization model can be identified in
two ways, which requires researcher input (discussed later in the

illustrative example): The factor mean and variance of the reference
group can either be fixed to 0 and 1, respectively (FIXED alignment
optimization option) or the factor mean can be estimated freely
(FREE alignment optimization option).

Planning Measurement Invariance Analyses:
Traditional Approach Versus Alignment

There are several decisions that affect the choice of how to
investigate and consider measurement invariance, and as a result,
there are many ways that researchers could decide to conduct their
analyses that could produce different results (i.e., many researcher
degrees of freedom). This makes planning an analysis and navigat-
ing those decisions difficult, particularly if the researcher wants to
develop an analysis plan before opening the data. Though it can be
difficult to develop a priori analysis plans for complex models,
having some plan is better than having no plan (Nosek et al.,
2019). To address this, we provide an explicit list of considera-
tions and decisions researchers can use to plan their analysis and
increase their transparency when choosing between the traditional
factor analytic approach, the alignment method, or a combination
of both. Then, using an illustrative dataset, we walk through a
detailed example of making these decisions and implementing
them in a preregistered analysis plan. The list of considerations
and decisions is briefly summarized in Table 1 and the preregistra-
tion is in Appendix B.

Decision 0: Prerequisites for Both Methods

Before considering a measurement invariance analysis, researchers
must consider the basic psychometric requirements that are shared by
both the traditional factor analytic approach and the alignment
method. Specifically, a tenable configural invariance model is funda-
mental to both methods, and so a configural invariance test is the
starting point for either approach. Because an MGCFA underlies the
configural model, the requirements for MGCFAs carry over to both
methods. Thus, before researchers can consider any measurement
invariance analysis, they should check and account for these three
requirements in study planning and data.

Evidence of Factor Structure. Researchers should only con-
sider measurement invariance testing for scales that have a known
factor structure in at least one group or sample, ideally with exist-
ing confirmatory evidence (i.e., confirmatory factor analyses).
Issues with factor structure can be avoided by selecting developed
scales with strong validity evidence, but this is not always possi-
ble. However, regardless of whether previous evidence is avail-
able, we recommend that researchers confirm the factor structure
of the scale in their own sample by conducting a confirmatory fac-
tor analysis on the entire sample. This is because a known factor
structure for the scale is a necessary requirement for testing config-
ural invariance. There is little point overall in testing measurement
invariance across multiple groups if the scale’s factor structure
cannot be supported in even one group. There is also no way to
test measurement invariance if the factor structure is not known
because it would be impossible to specity the factor models in ei-
ther method. Moreover, this preliminary check helps catch

2 There is an extension of the alignment method which applies to
uniquenesses (“alignment-within-CFA”) but will not be discussed here. For
interested readers, see Marsh et al. (2018).
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Table 1

Summary of Considerations for Measurement Invariance Testing in Analysis Planning

Considerations Traditional

Alignment

Decision 0: Prerequisites

Factor structure

Sample size
simulation studies

Assumptions

Configural invariance Test configural invariance

Cite previous studies and conduct CFA on current sample
Requires large sample sizes based on literature review and/or

Check number of scale points and multivariate normality

Same as traditional
Same as traditional

Same as traditional
Same as traditional

Decision 1: Research goal

Observed or factor scores
Model complexity

Compare observed scores and/or compare factor scores
Use with longitudinal designs, covariates, or cross-loadings

Compare factor means and variances
Cannot use with longitudinal designs®, covariates,
or cross-loadings

Decision 2: Model identification

Identification: CFA
Identification: MGCFA
Anchor item

Consider based on research goal

strategies

Choose marker item or variance standardization

Same as traditional
Use FIXED option if two groups, FREE otherwise

Consider theory-based, iterative, or significance-based selection No anchor items

Decision 3: Model evaluation

Configural model

Check model chi-squared and fit indices (e.g., point estimates,

Same as traditional

permutation tests, dynamic, equivalence tests)

Metric/scalar/strict models
and model fit index differences)

Partial invariance models

Check model fit differences (e.g., chi-squared difference test

Check model fit differences (e.g., modification indices)

No subsequent models; check number of noninvar-
iant items (e.g., 25% rule, R?) and impact of
noninvariance

No partial invariance models

# See Lai (2021) for a very recent extension of the alignment method for longitudinal models.

mistakes that can cause subtle but disastrous downstream analyti-
cal errors—mistakes such as mislabeled items, mistakenly mis-
specified factor models, and scoring errors—so that they can be
corrected before conducting and interpreting the more complex
measurement invariance analyses.

Sample Size. Researchers should have a large sample size for
each group when using either approach because latent variable mod-
els rely on large sample sizes to achieve adequate statistical power
and precision. Existing simulation studies based on the traditional
approach appear to suggest a minimum of 400 participants per group
(e.g., French & Finch, 2006; Koziol & Bovaird, 2018; Meade &
Bauer, 2007; Meade et al., 2008), but we emphasize that this should
be used as a starting point, and there is a need for further research
and consideration of other aspects that impact sample size require-
ments. For the traditional approach, sample size requirements can
increase depending on the complexity of the analysis because statisti-
cal error rates are inflated by additional hypotheses. This can include
when there are many items in the scale, when there are more than
two groups of interest, and when there are partial invariance analyses.
For the alignment method, such multiple comparisons are avoided as
it was designed with many-groups analyses in mind, but there is a
trade-off as a result: Type I error is adjusted in the item-level analy-
ses, so as the amount of items and groups increases, statistical power
decreases, thus increasing the required sample size. The nature of
this trade-off is not yet well understood and requires further research
(e.g., Flake & McCoach, 2018). Overall, both methods are generally
large-sample techniques, and this should be accounted for in study
design and before considering any measurement invariance analyses.

Assumption Checks. Researchers should check the assump-
tions of MGCFAs before using either approach. The two most per-
tinent assumptions pertain to maximum likelihood estimation: The
items should be measured on a continuous scale (or can safely be

treated as continuous) and follow a multivariate normal distribu-
tion. Multivariate normality can be tested in various ways, includ-
ing but not limited to examination of item-level distributions and
normality hypothesis tests. Likert-type items are, by definition,
measured on an ordinal scale (i.e., discrete or categorical), but
methodological research suggests that they can be acceptably
treated as continuous for confirmatory factor analyses if they are
measured on at least five scale points (e.g., Rhemtulla et al.,
2012). Violations of these assumptions can affect model fit tests
and fit indices, which consequently affect measurement invariance
results (Lubke & Muthén, 2004). Researchers can account for this
under both methods by selecting an alternative estimation strategy
for the MGCFA such as weighted least squares (Flora & Curran,
2004) or robust maximum likelihood estimation.

Once the prerequisites are met, researchers can then consider
which approach they should use and how to conduct the analysis.
We present three decisions, in temporal order, that researchers should
consider when planning a measurement invariance analysis, whether
it is the traditional approach, the alignment method, or both.

Decision 1: Choosing the Best Approach(es) for the
Research Goal

Perhaps the most important consideration when deciding between
the two approaches is the goal and purpose of the measurement
invariance investigation. We suggest researchers consider two main
types of goals: (a) developing and evaluating a scale to modify or
improve it by ensuring there is invariance and/or (b) obtaining a
model that allows for group mean comparisons either via observed
scores or latent scores. The researcher may have both goals or may
focus on one over the other. We discuss how these goals can guide
choosing between when and how to use each approach.
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Traditional. The traditional approach can be used to meet both
goals and accommodate the use of observed or latent scores to make
comparisons of means and variances. The traditional approach is
more amenable to the first goal of scale development and modification
because targeted item-level analyses can be conducted to identify
which items are noninvariant. Through partial invariance testing,
researchers can compare models with different specifications and lev-
els of noninvariance. However, the traditional approach requires the
researcher to specify which models to execute, in what order, and
what item-level follow-up tests will be conducted. Through this pro-
cess, the researcher could determine a set of invariant items to con-
tinue in the scale development process. We recommend replication
analyses of any such model, given the exploratory nature of the analy-
ses and the number of model comparisons needed.

If the goal of the researcher is to evaluate whether a scale’s
observed scores can be used to compare groups, that can be
achieved with the traditional approach by focusing on evaluating
scalar or strict invariance. If scalar or strict invariance is not met
to justify the use of observed scores, researchers can compare and
test a series of models to identify a partially-invariant model. A
correctly specified partial invariance model accommodates com-
parisons of latent means and variances.

Alignment. The alignment method can be used to meet both
goals in most cases but is more amenable to meeting the goal of
using latent scores to make group comparisons of factor variances
and means. The alignment method does not allow for the testing of
specific models with differing levels of measurement invariance,
but instead fully automates the procedure of identifying noninvar-
iant items. The alignment method is appropriate for practical use to
answer substantive research questions using optimized latent means
and variances, particularly when metric or scalar invariance fails
under the traditional approach (Marsh et al., 2018).

Though the results indicate which items are noninvariant, the
alignment optimization was not designed to evaluate whether instru-
ments can produce unbiased observed group means. The optimiza-
tion assumes that most items are approximately invariant to estimate
unbiased latent means. Thus, it is unclear whether items are invariant
enough to produce unbiased observed means if the item testing pro-
cedure results indicate all items are approximately invariant. Further,
no research points to what pattern of results would indicate that the
instrument will produce unbiased observed scores (e.g., number of
tolerable noninvariant items). This is an important area for future
investigation, but we currently cannot recommend that the alignment
results inform the usage of observed scores. The alignment method
could be used as an exploratory analysis to identify noninvariant
items, but we suggest that if researchers want to evaluate the use of
observed scores, they should plan to conduct a sensitivity analysis
comparing any latent estimates to observed estimates. If results dif-
fer, that may suggest the observed scores are biased. Further, the
alignment method cannot accommodate longitudinal models® (Marsh
et al., 2018) or models with cross-loadings or covariates.

Decision 2: Identifying the Model

Structural equation modeling always requires model identifica-
tion decisions. The traditional and alignment approach differ in
their assumptions regarding identification. Researchers can con-
sider this ahead of time to plan their analysis.

Traditional. The same challenges of model identification from
confirmatory factor analysis and structural equation modeling more
broadly are present in the traditional approach (Bollen, 2014), as is
the requirement of setting a scale to provide a metric for the latent
construct (Johnson et al., 2009). Additionally, to compare the mea-
surement of items across the groups, at least one item in the scale
must be fixed as an anchor item and assumed to be equal across
groups (Johnson et al., 2009). However, anchor items carry with
them the assumption of invariance that cannot be understated but is
also rarely substantiable: How can a researcher be sure that their
selection of an anchor item is correct? Approaches to selecting an
anchor item or items can vary (e.g., theory-based, iterative, signifi-
cance-based), and the results and performance of measurement
invariance tests can vary based on the choice of anchor item (e.g.,
Meade & Lautenschlager, 2004; Meade & Wright, 2012; Stark et
al., 2006; Wang & Yeh, 2003). Specific details on methods for
choosing anchor items and their implications are beyond the scope
of this tutorial, so for demonstration purposes, we will opt for an
informal content review of the items.

Alignment. The alignment method assumes minimal nonin-
variance: Most of the items should be approximately invariant, but
researchers do not indicate any specific noninvariant items ahead
of time. However, researchers must choose how to identify the
model with respect to the scaling of the latent factor means and
variances. There are two options: The factor mean and variance of
the first group can either be fixed to 0 and 1 respectively (FIXED
alignment optimization), or the factor mean of the first group can
be estimated freely (FREE alignment optimization). As per Aspar-
ouhov and Muthén (2014), the decision is generally straightfor-
ward: FIXED must be used if there are only two groups, and
FREE can be used if there are three or more groups.

Decision 3: Evaluating the Model

Traditional. CFA underlies all aspects of the traditional
approach, making model fit criteria crucial. However, researchers
are faced with a variety of recommendations: Many cite guidelines
such as from Hu and Bentler (1999) to compare a set of model fit
indices (e.g., the configural model might be considered to fit well
if its CFI > .95, RMSEA < .06, and standardized root-mean-
square residual [SRMR] < .08). This is because chi-square model
fit tests are sensitive and almost always rejected with large sample
sizes, and CFA 1is a large-sample technique, meaning the test will
likely be rejected in most cases. Thus, for the configural model,
we recommend that the chi-square test be reported but the evalua-
tion of model fit be based primarily on model fit indices.

To determine whether metric, scalar, and strict measurement
invariance are supported, researchers would conduct chi-square
model fit difference tests between successive models at oo = .05 and
examine changes in fit indices between the models. Here, failing to
reject the null implies that the two models fit equally well and thus
provides support to the higher measurement invariance model (fewer
estimated parameters or higher degrees of freedom makes the higher
model preferable due to parsimony). Researchers should consider
how much model misfit is needed to reject the next model. Chen

3 The alignment method was very recently extended to apply to
longitudinal models (an extension of “alignment-within-CFA”) but will not
be discussed here. For interested readers, see Lai (2021).
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(2007) suggests increases in RMSEA by more than .015 or decreases
CFI by more than .01, can be interpreted as failure to support the
higher-level measurement invariance model. Conventionally, we
recommend that researchers report all three methods and clearly
specify decision rules for how they will interpret them ahead of
time. For example, researchers could specify that they will report
both chi-squared model fit difference tests and model fit index differ-
ence guidelines but provide rationale for their interpretation
(e.g., acceptable model fit index differences will be interpreted as
adequate fit regardless of the chi-squared test results due to large
sample sizes). Though these decisions rules are difficult to develop a
priori, they provide guidance in the face of conflicting findings and
can limit the inclination to cherry pick results.

Note, however, that there is considerable contention regarding
these conventional recommendations. Hu and Bentler’s (1999) guide-
lines, for example, are popular but are one of several guidelines of
only a subset of fit indices (e.g., Hooper et al., 2008) and only apply
to the specific conditions that the original authors investigated (Hu &
Bentler, 1999, p. 446). These points are also true for the model fit
comparison criteria suggested by Chen (2007). Indeed, recent
research suggests the use of dynamic fit index cut-offs that are com-
puted based on the characteristics of the examined factor model and
not universally fixed (McNeish & Wolf, 2021). Moreover, equiva-
lence testing approaches with multigroup structural equation model-
ing have demonstrated some evidence of superior performance to
both the chi-square test and fixed fit index approaches with respect to
error control, but may require greater sample sizes to achieve
adequate statistical power (Counsell et al., 2020; Yuan & Chan,
2016). Permutation methods, which generate empirical distributions
for model fit measures, also present Type I error control advantages
over conventional approaches (Jorgensen et al., 2018). Overall, we
additionally recommend that the choice of model fit criteria be
clearly specified a priori and, if feasible, in consideration of model
and design characteristics.

Partial Invariance. Model fit criteria are also necessary for
researchers to determine whether partial invariance analyses will
be conducted. Here, we recommend that researchers specify the
following: (a) whether partial invariance analyses will be con-
ducted or not upon failure of achieving metric or scalar invariance
based on the specified criteria, (b) how noninvariant items will be
identified and accounted for, and (c) how the final partial invari-
ance model will be used to address the research goal, for example,
to remove noninvariant items or to retain them but estimate them
freely in a structural equation model. We encourage researchers to
consider under what circumstances they will conduct a partial
invariance analysis ahead of time because downstream results
(latent vs. observed means) could differ across models. For exam-
ple, a preregistration could specify that a partial invariance analy-
sis will only be conducted if one of the model evaluation criteria
indicates a lack of invariance, or only if all model evaluation crite-
ria converge to a conclusion of failing to meet invariance.

Alignment. Model fit criteria are relevant only to finding a
well-fitting baseline model. The fit does not change from the base-
line configural model because alignment does not apply constraints
or formally test any additional models. Like the traditional
approach, researchers should focus on deciding their criteria for a
well-fitting measurement and configural model ahead of time. The
other aspect of model evaluation for the alignment is ensuring mini-
mal noninvariance. The performance of the alignment solution is

evaluated via assumption checks and item-level analyses, primarily
the number of significantly noninvariant items, their degree of non-
invariance, and the contribution of each item to total noninvariance.
Based on Monte Carlo simulations, Muthén and Asparouhov
(2014) suggested a rule of thumb that no more than 25% of items
should be noninvariant based on the item-level significance tests for
good performance (interpreted at oo = .001). This was supported in
simulations from Flake and McCoach (2018) with good perform-
ance when less than 29% of items are noninvariant.

Furthermore, researchers can assess the R? invariance effect
size measure, which quantifies how much variability in the item
parameter estimates can be explained by the groups’ factor
means and variances. An R? near 1 indicates complete invariance
because the variability in item parameters is completely
explained by group mean differences, whereas an R? near 0 indi-
cates that group mean differences explain none of the variability
in the item parameter. However, exact guidelines for assessing
this degree of invariance or performance are not yet clearly
established and require further investigation. Because of this, we
also recommend examining the magnitude of the item differen-
ces via raw and/or standardized effect sizes (e.g., Gunn et al.,
2020) for each item-level test to gauge whether potential devia-
tions due to noninvariance are meaningful.

Ilustrative Example: Consideration for Future
Consequences Scale Across Sexes

Next, we demonstrate the conceptual and empirical implications
of the traditional model comparison and alignment method
approaches by illustrating how to plan a measurement invariance
analysis using the Consideration for Future Consequences Scale
(CFC). The CFC measures how people consider the future conse-
quences of their current behavior and how much their behaviors are
influenced by those future consequences (Strathman et al., 1994).
Participants indicate their agreement to 12 items on a 5-point scale (1
= extremely uncharacteristic, 5 = extremely characteristic). Construct
validation evidence from Petrocelli (2003) and Joireman et al. (2008)
suggests that the CFC scale, as originally developed, measures two
future consequence constructs: a future concern subfactor, which is
measured with four items (e.g., “I am willing to sacrifice my immedi-
ate happiness or well-being in order to achieve future outcomes”);
and an immediate concern subfactor, which is measured with eight
items (e.g., “I only act to satisfy immediate concerns, figuring the
future will take care of itself””). For simplicity of illustration, we limit
our example to a test of one of the subscales across two groups. We
evaluate the measurement invariance of the eight-item immediate
concern subscale (“CFC-immediate”) across sex (male and female)
with the goal of comparing mean scores (latent or observed) on con-
sideration for future consequences across males and females.

The data for the CFC was acquired from the Open-Source Psy-
chometrics Project (openly available at https://openpsychometrics
.org/_rawdata/). For illustration purposes, we removed missing data
on any of the eight items of interest or on sex on a listwise basis,
resulting in an effective sample size of 14,598 participants (54%
female; original n = 15,035). We performed the analyses for the tra-
ditional factor analytic approach using R Version 4.3 with the lav-
aan package Version .6-7 (as of writing, the alignment method can
only be correctly implemented in Mplus). We duplicated the
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analyses for the traditional factor analytic approach and performed
the alignment method in Mplus Version 8.4. All materials can be
accessed in the supplementary materials: https://osf.io/3p7n9/.

Illustrative Analysis Plan Example

Below, we walk through the decisions in example form of how
researchers could structure, develop, and rationalize an analysis plan
with each approach. Though we provide examples of decisions
researchers can make, we want to emphasize that other decisions can
be made with adequate justification. Our goal is to demonstrate how
to make and justify decisions ahead of time to develop an a priori
analysis plan, not to dictate the only way one can proceed with a
measurement invariance analysis. This can be used as an example
template for a preregistration of a measurement invariance analysis
(see Appendix B). First, we will examine the prerequisites to deter-
mine whether measurement invariance testing is feasible with either
approach. We will then walk through the decisions for both the tradi-
tional factor analytic approach and the alignment method.

Decision 0: Prerequisites for Both Methods

Evidence of Factor Structure. The CFC scale is a relatively
well-known scale with a known factor structure substantiated by
some confirmatory evidence. Construct validation evidence from
Petrocelli (2003) and Joireman et al. (2008) suggests that the CFC
scale, as originally developed, measures two future consequence
constructs: a future concern subfactor, which is measured with
four items; and an immediate concern subfactor, which is meas-
ured with eight items. We subsequently conducted a CFA on the
overall sample using this factor structure specification (estimated
with MLR due to multivariate non-normality; see Assumption
Checks section). As per Hu and Bentler (1999), we deemed the
CFA to fit well if its CFI > .95, RMSEA < .06, and SRMR <
.08. We found that the factor structure was indeed supported in
our sample with good model fit, x3_5(20)= 919.74, p < .001, ro-
bust CFI = .972, robust RMSEA = .060, 90% CI [.057, .064],
SRMR = .023. Overall, we can conclude that there is adequate
knowledge and evidence of factor structure of the CFC scale to
consider conducting measurement invariance tests.

Sample Size. We had over 7,000 female participants and over
6,000 male participants, which far exceeds the suggested sample size
of 400 participants per group as determined from our review of simu-
lation studies in the measurement invariance literature (e.g., French &
Finch, 2006; Koziol & Bovaird, 2018; Meade & Bauer, 2007; Meade
et al., 2008). We were also only investigating two groups with a single
eight-item subscale, which greatly minimizes the possible complexity
of the analyses, even when considering possible partial invariance
analyses. Overall, we could justify that we had an adequate sample
size to consider conducting measurement invariance tests.

Assumption Checks. The CFC-immediate subscale is a 5-point
Likert-type scale, which meets the minimum amount of scale points
required to be safely treated as continuous. However, we found that
our data violated the assumption of multivariate normality (e.g.,
clearly non-normal item-level distributions, which necessarily imply
multivariate non-normality; see Figure 2). To account for this, we
used robust maximum likelihood estimation with the Yuan-Bentler
scaled chi-squared statistic (MLR; Yuan & Bentler, 2000) and robust
standard errors for all CFAs and measurement invariance tests.

Overall, we could conclude that we have met the assumptions
required to consider measurement invariance.

Decision 1: Choosing the Best Approach(es) for the
Research Goal

Now we can decide between the traditional factor analytic
approach and/or the alignment method. As mentioned previously,
the illustrative goal is to evaluate the measurement invariance of
the eight-item immediate concern subscale across sex to ultimately
compare mean scores (latent or observed) on consideration for
future consequences across males and females.

Traditional. The traditional approach can accommodate this
research goal regardless of whether the comparison is made on latent
or observed means. If we can conclude at least complete scalar invar-
iance of the model we can use the observed means or if we can iden-
tify a partially invariant model, we can use the latent means.

Alignment. There are no expected cross loadings, covariates,
or other sources of model complexity that the alignment method
cannot accommodate. Therefore, the alignment method can
accommodate this research goal by comparing latent means.

Decision 2: Identifying the Model

Traditional. In practice, it is helpful to track the number of
parameters and degrees of freedom based on the data and varying
model identification strategies available to researchers under the
traditional approach (see supplementary materials on https://osf.io/
3p7n9/). To identify each model, we fixed each group's anchor
item loading to 1 and factor mean to 0. As mentioned previously,
we reviewed the content of the items and selected the item Q2 that
was deemed least likely to be noninvariant as the anchor item.

Alignment. We fixed the factor mean and variance of the first
group to 0 and 1 respectively because we were only comparing
two groups (i.e., the FIXED alignment configuration).

Decision 3: Evaluating the Model

Traditional. We followed the most popular conventional
recommendations for model fit indices, chi-squared model fit
tests, and model fit differences. For all models, we reported
both the chi-square model fit test and multiple additional fit
indices. To evaluate the overall factor model across both groups
as well as the baseline configural model, we reported the total
model chi-square and the CFI, RMSEA, and SRMR. If the chi-
square test was significant, which was likely given the large
sample size, we deemed the overall factor model and configural
model to have acceptable fit to move forward with invariance
testing if CFI > .95, RMSEA < .06, and SRMR < .08 (Hu &
Bentler, 1999). Then, to determine whether metric, scalar, and
strict measurement invariance were supported, we reported the
chi-squared model fit difference tests and model fit index differ-
ences between successive models. We concluded that the next
level of invariance was not supported if the chi-square test was
significant at oo = .05 and/or the higher-level model increased
RMSEA by more than .015 or decreased CFI by more than .01
(Chen, 2007). Thus, if the two criteria disagreed, we returned to
the level of measurement invariance that failed and conduct a
partial measurement invariance analysis.

Partial Invariance. Given that the research goal was to com-
pare means across sex, regardless of whether they are latent or
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Figure 2
Item Score Distributions for the CFC-Immediate Scale
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observed, we planned to proceed with partial invariance analyses
if metric or scalar invariance was not supported by either the chi-
square difference test or differences in model fit indices. We
employed a backward-selection approach using modification indi-
ces to identify noninvariant items.

Specifically, we returned to the model in which that level of mea-
surement invariance failed, identified the first item that is most nonin-
variant (i.e., the item parameter with the greatest modification index),
constrained the loadings and/or intercepts of all items except the nonin-
variant item to be equal across groups, and compared the fit of the new
model with the old model in which measurement invariance was
achieved. If there was no evidence that the models differed in fit, as
determined by chi-squared model fit difference tests and differences in
model fit indices, then partial invariance was established. However, if

there was still a comparative difference in fit between the new and old
model, we proceeded to the next most noninvariant item, allowed its
loading and/or intercept to freely vary alongside the first item, and
retested the new model’s fit again against the model in which measure-
ment invariance was achieved. We repeated this process until partial
invariance was established or modification indices no longer indicated
significant improvements in model fit (MIs << 3.84, which is the critical
value for chi-squared tests for df = 1 at o = .05). Once the final partial
invariance model was established, we used it to estimate latent factor
scores to use for statistical analysis instead of the observed scores.
Alignment. For the baseline configural model, we followed
the most popular conventional recommendation for model fit indi-
ces: As per Hu and Bentler (1999), we deemed the configural
model to fit well if its CFI > .95, RMSEA < .06, and SRMR <
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.08. For evaluating the performance of the alignment optimization,
we followed Muthén and Asparouhov’s (2014) rule of thumb in
which no more than 25% of parameters are noninvariant to con-
clude good performance.

Presentation and Interpretation of Results
Traditional Factor Analytic Approach

We show how overall model fit comparison results can be sum-
marized in an article in Table 2.

Configural Invariance. To test CFC-Immediate for configu-
ral invariance across sex, we conducted a multigroup confirmatory
factor analysis where all loadings, intercepts, and error variances
are freely estimated (only the Q2 loading and factor means are
constrained to equality across sex for identification). The configu-
ral invariance model met our criteria for good fit based on fit indi-
ces, Ay _p(40)= 943.05, p < .001, robust CFI = .972, robust
RMSEA = .061, 90% CI [.057, .064], SRMR = .023. As discussed
previously, the chi-square test is likely to be rejected even in the
presence of adequate fit indices. Based on our model evaluation
criteria, we determined that configural invariance is supported.

Metric Invariance. Because the scale satisfied configural
invariance, we proceeded to test metric invariance. To test the
scale for metric invariance across sex, we built upon the previous
multigroup confirmatory factor analysis by constraining the seven
loadings to be equal across sex. After specifying this new model,
we determined whether metric invariance was supported by com-
paring the configural invariance and metric invariance models
using the Yuan-Bentler scaled chi-squared model fit difference test
and the differences in CFI and RMSEA. Results indicated no sig-
nificant difference in model fit between models, Ay _(7)= 7.80,
p = .350, ACFI = < .001, ARMSEA = .0047. Therefore, metric
invariance is supported.

Scalar Invariance. Next, because CFC-immediate also satis-
fied metric invariance, we proceeded to test scalar invariance. To
test scalar invariance across sex, we again built upon the previous
multigroup confirmatory factor analysis by additionally constrain-
ing the seven item intercepts to be equal across sex. Like testing
metric invariance, we determined whether scalar invariance is sup-
ported by comparing the metric invariance and scalar invariance
models by again using the Yuan-Bentler scaled chi-squared model
fit difference test and the differences in CFI and RMSEA. Results
from the chi-square test but not the fit indices indicated that the
metric invariance model fit significantly better than the scalar

invariance model, Axé73(7)= 56.50, p < .001, ACFI = .001,
ARMSEA = .0026.

There are two possible interpretations: Scalar invariance was
not supported due to the rejection of the chi-square test, or scalar
invariance was supported due to no deterioration of model fit indi-
ces when comparing the metric to the scalar model. If we conclude
the former for illustration, then we can make observed mean com-
parisons of the observed scale scores across sex: There was no evi-
dence that males (M = 3.19) differed from females (M = 3.17) on
consideration for immediate future consequences, #(13,898) =
1.78, p = .0748; d = -.03 (95% CI [-.06, .00]). However, because
we have a case of conflicting evidence between model comparison
tests and fit indices, we proceeded to conduct partial invariance
analyses and compare factor means from the final partial invari-
ance model as per our analysis plan.

Partial (Scalar) Invariance. To establish a partial scalar
invariance model, we revisited the original scalar invariance model
and computed modification indices to identify the most noninvar-
iant item intercept. Modification indices indicated that freeing the
QO intercept would result in the greatest significant model fit
improvement (MI = 16.29), so we freed that parameter, compared
the new partial scalar invariance model to the metric invariance
model, and repeated the process until an acceptable model was
achieved. Through this iterative process, we established a partial
scalar invariance model by freely estimating item intercepts for
Q9, Q12, Q2, Q5, and Q10 (see Table 3).

Based on this partial scalar invariance model, males reported
greater latent immediate consideration for future consequences than
females, AMr_y; = —0.030, p = .021. Though this mean difference
comparison is statistically significant whereas the observed score
analysis was not, the results do not conflict substantively. The latent
mean difference of .03 and the observed standardized difference of
.03 are nearly identical and small. Given the large sample size, an
applied researcher could interpret these results as consistent: There
is no meaningful difference between males and females on this con-
struct. Comparing the latent mean difference from the partial invari-
ance model to the observed score difference provides a sensitivity
analysis and demonstrates that the mean difference (latent or
observed) is not sensitive to the effect of the noninvariant inter-
cepts, even when the majority of items were noninvariant. This is
logical given that there were conflicting model fit results and the
differences in the intercepts were small (.048 to .080; see supple-
mentary materials on https://osf.io/3p7n9/ for full output).

Strict Invariance. Scalar invariance was partially supported
as per our evaluation criteria, so we proceeded to report the strict

Table 2
CFC-Immediate Fit Indices for Configural, Metric, and Scalar Invariance Models

Model s df P CFI RMSEA [90% CI] SRMR
1. Configural 943.05 40 <.001 0.97 0.061 [0.057, 0.064] 0.023
2. Metric 982.67 47 <.001 0.97 0.056 [0.053, 0.059] 0.024
1vs.2 7.80 7 .350 <.001 —.0047
3. Scalar 1,049.17 54 <.001 0.97 0.053 [0.051, 0.056] 0.025
2vs.3 56.50 7 <.001 .001 —.0026
4. Strict 1,080.09 62 <.001 0.97 0.050 [0.047, 0.053] 0.026
3vs. 4 15.75 8 .0462 <.001 .0034

Note. Fit indices are robust forms.
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Table 3

CFC-Immediate Partial Scalar Invariance Model Comparisons

Model (freed intercept) Modification index 13 p(1) p
Model 1 (Q9) 16.29 38.13 <.001
Model 2 (Q12) 12.44 24.08 <.001
Model 3 (Q2) 8.34 14.65 .0055
Model 4 (Q5) 5.94 7.92 .0477
Model 5 (Q10) 6.63 0.42 .810

Note. Partial scalar invariance models were compared to the metric
invariance model.

invariance model for illustrative purposes. We built upon the full
scalar invariance model by additionally constraining the unique-
nesses of each of the eight items to be equal across sex. Like test-
ing scalar invariance, we determined whether strict invariance is
supported by comparing the scalar invariance and strict invariance
models using the Yuan-Bentler scaled chi-squared model fit differ-
ence test and the differences in CFI and RMSEA. Results from the
chi-square test but not the fit indices indicate that the scalar invari-
ance model fits significantly better than the strict invariance
model, Ay2 5(8) = 15.75, p = .0462; ACFI < .001, ARMSEA =
.0034. Similarly, the strict invariance model indicated no evidence
that males differed from females in consideration for immediate
future consequences, AMg_y; = —0.024, p = .056.

Alignment Method

Configural Invariance. The first assumption of the alignment
method is configural invariance. Therefore, before beginning an
alignment, we followed the same first steps for establishing config-
ural invariance as the traditional approach (i.e., the MGCFA
across groups with no constrained parameters). As was illustrated
for the traditional approach, the configural invariance model fit
well, and this identification strategy does not affect model fit, so
configural invariance is established. We were thus justified to pro-
ceed with the alignment method.

Alignment. Because configural invariance was established, we
used the configural model for alignment with the FIXED specifica-
tion (required when testing two groups). As discussed previously,
alignment produces a solution that allows for factor mean compari-
sons and ad-hoc item invariance analysis, accounting for small
amounts of measurement noninvariance. There are three results of
interest: pairwise comparisons for factors means in each group,
pairwise comparisons for invariance of factor loadings between
each group, and pairwise comparisons for invariance of item

intercepts between each group. Prior to examining the factor means,
we first examined the pairwise comparisons for loadings and inter-
cepts to identify any noninvariant items. As per Asparouhov and
Muthén (2014), these pairwise comparisons are corrected for multi-
plicity in the alignment algorithm and interpreted at oo = .001.

Factor Loading Invariance. Table 4 shows the estimated
factor loadings and pairwise comparisons between sexes. There
was no evidence that factor loadings produced by the alignment
solution differed across sex for any of the items, ps > .001. The
R? statistic provides a measure for the degree of invariance for the
parameter in that it quantifies how much variability in the parame-
ter can be explained by the groups’ factor means and variances.
Higher values correspond to higher degrees of invariance, with
values near 1 indicating complete invariance. The presence of
items with high R? values is indicative of good performance of the
alignment method, even if some items have low R values
(Muthén & Asparouhov, 2018). Indeed, most items here showed
high R? values except Q9, which therefore indicates that the align-
ment method performed well.

Item Intercept Invariance. Table 5 shows the estimated item
intercepts and pairwise comparisons between sexes. There was evi-
dence that three item intercepts produced by the alignment solution
differed across sex for Q2, Q9, and Q12 (ps < .001), which exceeds
our prespecified 25% rule of thumb (three noninvariant items out of
eight). However, these intercept differences, although statistically
significant, do not appear to be meaningful, especially with respect
to the scale of the measure (e.g., less than .1 on a 5-point scale, or
less than 2%), and they also differ in direction. This suggests that
whatever bias may be present with these noninvariant items will not
meaningfully affect interpretation of factor means. Indeed, the sum
of the differences is about —.012 points. We otherwise see several
extremely low R? values despite all pairwise comparisons being
nonsignificant, but the presence of high R? values such as Q3 indi-
cate that the alignment procedure is performing well.

Factor Mean Comparison. Though results indicated the
alignment method did not produce a valid solution in line with our
preregistered cut-off of 25% or less noninvariant items, our follow
up investigation of the raw and standardized effect sizes of the
item differences suggested the solution was valid because the item
differences were extremely small. Thus, we compared the aligned
factor means of the CFC-immediate for each sex produced from
the solution (male as reference group). There was no evidence that
males and females differed in immediate consideration for future
consequences, AMr_y = —0.029, p = .097. When such instances
arise, we recommend that researchers clearly state how their

Table 4

CFC-Immediate Pairwise Factor Loading Comparisons Across Sex

Item }\‘M(ll(’ }"Female )“Femule - }\’M(ll(’ SE?,Female - MMale P R2
Q2 0.74 0.70 —0.044 0.021 .037 73
Q3 1.06 1.07 0.006 0.015 .682 .99
Q4 1.01 1.02 0.015 0.016 .369 .89
Q5 0.55 0.55 —0.004 0.018 .803 .99
Q9 0.80 0.83 0.028 0.018 130 <.01
Q10 0.87 0.87 —0.001 0.017 972 1.00
Q11 1.08 1.09 0.003 0.014 .809 1.00
QIl2 0.63 0.63 0.001 0.017 933 1.00

Note. '\ refers to factor loadings.
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Table 5

CFC-Immediate Pairwise Item Intercept Comparisons Across Sex

Item VMale VFEemale VFEemale = VMale SEVFemale - VMale P R2
Q2 3.32 3.26 —0.061 0.018 .001

Q3 3.28 3.27 —0.006 0.012 .648 .98
Q4 3.27 3.25 —0.018 0.013 .185 .86
Q5 244 2.49 0.047 0.018 .009 <.01
Q9 3.38 3.46 0.071 0.018 <.001

Q10 3.43 3.46 0.037 0.015 011 <.01
Ql1 3.36 3.34 —0.015 0.012 204 .90
Q12 3.08 3.01 —0.067 0.017 <.001

Note. v refers to item intercepts.

analyses, reporting, and interpretation deviated from the original
plan. Then, in subsequent preregistrations, they can incorporate
the added analyses or investigations into decision making criteria.

Discussion

In this tutorial, we described two approaches to measurement
invariance testing: The traditional approach using MGCFAs and
the alignment method. We then illustrated how to develop an anal-
ysis plan for both methods side-by-side by walking through con-
siderations step-by-step. Here, we will describe key similarities,
differences, and future areas of research that would facilitate ease
of use and interpretation for both methods.

Procedural Comparison
Similarities

As was illustrated in our step-by-step comparison, both methods
begin with the same prerequisite checks. Overall, the traditional
approach works with many of the same steps and considerations
as the alignment method: The measure needs a confirmed factor
structure and evidence of configural invariance before additional
testing can be carried out. Should the configural model be unten-
able, both approaches would also not be feasible. Though not the
focus of this tutorial, it is worth noting that if there are more than
two groups, evaluating configural invariance is onerous, requiring
an evaluation of the factor structure in each group and then in
comparison across groups, but this is necessary for both methods.
Therefore, both methods share the same planning requirements for
prerequisites and configural invariance.

Differences

Perhaps the starkest difference is in labor and specialized
knowledge that a researcher must possess to run and interpret the
two methods. Whereas the traditional approach is largely directed
by researcher decisions and model specifications at every step, the
alignment method only requires specification of a configural
model and otherwise handles the optimization procedure and item-
level analyses automatically. The additional knowledge require-
ment and risk of error under the traditional approach is nontrivial:
From a wide pool of options, researchers must decide on model
identification strategies across multiple models, selection strat-
egies for anchor items, and model fit criteria for interpreting many
model comparisons—all of which are not decisions needed for the
alignment method. While navigating all the decisions, researchers

could also inadvertently engage in questionable measurement
practices (Flake & Fried, 2020) as they conduct many sets of
slightly different analyses, potentially producing different down-
stream conclusions. With just one error of inference or misspecifi-
cation, the researcher could continue along the wrong path and
produce additional false positives (Asparouhov & Muthén, 2014;
Simmons et al., 2011). For example, a researcher could select the
wrong anchor item or flag the wrong noninvariant items when con-
ducting the potentially dozens of statistical tests needed to identify
a noninvariant item and then, uncertain of if they made the right
decision, select different items and rerun the analysis. Overall, it is
easier to get lost in a garden of forking paths with the traditional
approach (Gelman & Loken, 2014), whereas there is less planning
involved for the alignment method simply because there are fewer
decisions that the researcher needs to make.

These risks were made clear by the partial scalar invariance
analysis: Model evaluation criteria were conflicting, and so we
could have reasonably decided to conduct the partial invariance
analysis or not. Having taken a conservative approach by conduct-
ing the analysis if there were any conflict in criteria, we manually
identified and tested five different partial scalar invariance models.
Notably, the final partial invariance model produced a statistically
significant group difference whereas our observed score and align-
ment analyses did not. These conflicts can put researchers in a dif-
ficult position: How do they decide if noninvariance is practically
significant? Here we suggest researchers consider what differences
at the item and factor levels would be substantively meaningful
ahead of time. In our example, item-level intercept differences
ranged from .006 to .080 across both methods (less than 2% of the
scale). Mean differences were also consistently small across all
methods: .030 points for the observed standardized difference,
.030 for the latent mean difference with partial invariance, and
.029 for the latent mean difference with alignment. Though these
vary across research questions, we encourage researchers to go
through the same process while analysis planning by considering
meaningful raw/standardized differences for their research ques-
tion (e.g., Gunn et al., 2020) and to develop contingencies for
interpreting results in the face of conflicts.

On one hand, the alignment method substantially decreases the
burden and possible mistakes from the researcher by reducing
input and number of manually-specified comparisons, as well as
the number of errors of inference at the model comparison level—
especially when there are large numbers of items or groups. But,
on the other, we warn that this ease of use also renders the align-
ment procedure liable to misuse and misinterpretation. Indeed, the
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onus is largely on the researcher to properly interpret the perform-
ance and results of the item-level tests in context, and measures
for performance of the procedure are still poorly understood and
require understanding of the scale and context of its use for proper
interpretation beyond rules of thumb. As we saw in our example,
our results violated the 25% rule we specified ahead of time, but
upon further consideration of the raw and standardized effect sizes
of item differences, interpreting the latent mean difference seemed
justified. Asparouhov and Muthén (2014) additionally suggested
using simulation studies to evaluate performance, but this imposes
a different requirement of specialized knowledge that is largely
inaccessible to applied researchers. Therefore, although there is
less planning involved for the alignment method, there are out-
comes that make interpreting the results less straightforward, and
researchers should be prepared to update and change analysis
plans as the methodology evolves.

Using Both Methods: Possible Robustness Uses and
Recommendations

Both methods essentially resulted in mean comparisons with
similar conclusions: The latent and observed mean comparisons
under the traditional approach found no meaningful difference in
CFC-Immediate between males and females, and the latent mean
comparison under the alignment method found no difference as
well. Despite ultimately arriving at these conclusions through
holistic model evaluation as specified in our illustrative analysis
plan, both methods also shared similar evidence suggesting the
presence of small amounts of measurement noninvariance sourced
from the same items. For the traditional approach, the chi-square
model comparison test for scalar invariance was statistically sig-
nificant, but the changes in model fit indices were trivial. For the
alignment method, the optimization procedure appeared to per-
form poorly as per the 25% rule, flagging more than 25% of items,
but the deviations in item parameter estimates were trivial, for
example, intercept differences of less than .1 on a 5-point scale
that sum to a negligible effect on the overall score. Overall, the il-
lustrative data analysis serves as an example of how the alignment
method can be a viable alternative to the traditional approach in a
two-group context. Because both approaches were viable analysis
options, the similarity in results was not surprising.

Although either method alone would have led to the same con-
clusions, it is possible that we may have produced different results
had we made different but defensible analytical decisions, such as
different strategies/criteria for partial invariance analyses. Errors
of inference are likely when specifying many models and follow-
ing an analysis plan that is completely data driven, as is done with
the traditional approach (MacCallum et al., 1992). Given this, we
propose that the alignment method can be used as an exploratory
tool to compliment the traditional approach, assuming that both
methods are appropriate for the research problem. For example,
the item-level tests from the alignment method can be used in an
exploratory manner to empirically guide partial invariance analy-
ses as a sole strategy or in tandem with the numerous existing
strategies. If the noninvariant items identified by the alignment
method match those that are identified through the strategies
decided by the researcher and the relative magnitudes of noninvar-
iance also match, then there is additional evidence that the selected
items are correct. In our illustrative example, we identified Q2,

Q5, Q9, Q10, and Q12 as noninvariant items in the partial invari-
ance analysis. Based on the alignment optimization results, these
selections were defensible: Q2, Q9, and Q12 were flagged as non-
invariant, and Q5 and Q10 had R? values close to zero.

Similarly, the alignment method can also compliment the tradi-
tional approach as an empirical robustness check or additional sen-
sitivity analysis. For example, the alignment method can be used
concurrently as a comparison to the traditional approach. If
researchers expect to substantially inflate Type I error rates under
the traditional approach—particularly because of numerous nested
model comparisons—then the results can be compared against the
alignment optimization. We recommend against this strategy if
there is reason to believe that the sample size is too small due to
the trade-off of Type I error control for increased Type II errors
for the item-level analyses, that is, the alignment method is more
likely to fail to detect measurement noninvariance if it exists.

If both methods are used, it is important to match model evalua-
tion criteria, including the fit criteria for the baseline model and
interpretation of invariance with effect sizes. For both methods, we
matched fit criteria for the configural model. Moreover, we consid-
ered not only whether measurement noninvariance was present, but
also whether the amount of noninvariance is practically impactful
on the downstream analyses with both methods. If using both meth-
ods or interpreting the results of the traditional approach and the
alignment method, we recommend that researchers employ this
holistic evaluation practice universally if results from both the tradi-
tional approach and alignment method are considered together, and
we caution that asymmetrical model evaluation strategies can pro-
duce conflicting results, as was possible even in simplified ideal
cases such as the illustrative example (e.g., very large sample size,
only two groups, simple eight-item scale).

However, the alignment method should not be treated as an
accessory analysis that can be added onto any traditional approach
analysis without proper consideration, nor should it be considered
as a universal alternative. The alignment method imposes the
restriction of unknown generalizability and analysis of only latent
means, the former of which is an obstacle for generalizable
research, and the latter of which is rarely practiced by psycholo-
gists using conventional parametric analyses (e.g., f-tests,
ANOVAs, regression). Therefore, the alignment method should
not be considered a universally superior option to the traditional
approach, but it presents several procedural advantages should
these considerations not be of concern.

Recommendations for Future Methodological Research

Though there is rich literature on methodologies for measure-
ment invariance, we identified gaps that are critical for researchers
to plan, use, and interpret a measurement invariance analysis: sam-
ple size planning, model evaluation criteria, and the general neces-
sity and role of the method in substantive research. First, sample
size determination is currently difficult for both approaches with
no complete and user-friendly calculation tool, resulting in overre-
liance on vague rules of thumb. More research is required to better
understand how exactly to increase sample sizes in response to
multiple comparisons from larger numbers of items and groups,
and the measure’s psychometric properties. This is especially im-
portant for the alignment method, which has no studies to date on
sample size determination given its relative novelty. Our starting
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sample size suggestion is only based on existing simulation studies
pertaining to the baseline configural model, and there is no statisti-
cal power research available yet for the item-level analyses. Future
simulation studies should manipulate these aspects on varying lev-
els of measurement noninvariance and group sizes to eventually
incorporate them into a user-friendly sample size calculator for
nonmethods researchers.

Second, model evaluation criteria require further qualification
across a larger pool of possible situations. There are multiple plau-
sible model fit criteria for the traditional approach and determining
what is an acceptable model using them is difficult. Here, for
example, we employed the common criteria developed by Hu and
Bentler (1999) for illustrative purposes. However, these criteria
were developed on a limited set of models and may not generalize.
Despite these well-known limitations, there are few alternatives
with accessible implementations for applied researchers. As a
result, different model fit criteria and/or the omission of certain
strategies can produce conflicting or misleading results. Analysis
planning can partially address this, and we provided our preregis-
tration example to encourage researchers to consider which model
fit criteria are pertinent to them and decide ahead of time how they
will use and interpret them. We also noted that various new
approaches to evaluating model fit are up and coming (McNeish &
Wolf, 2021), and we encourage applied researchers to consider
incorporating these approaches into their analysis plans.

With the alignment method, researchers not only need to evalu-
ate the fit of the baseline configural model, but also the number of
noninvariant items. Currently there is a rough 25% rule of thumb
limit suggested by Muthén and Asparouhov (2014) based on lim-
ited empirical evidence. The alignment method also provides val-
ues such as the R? effect size measure of measurement invariance
that are not yet well understood. As seen in our illustrative exam-
ple, these important ambiguities include how to interpret this R?
when the results seem to conflict with the significance test (e.g.,
nonsignificant invariance test but R* = 0). When these fringe
cases or conflicts occur, what specific criteria can be used to gauge
“high” as opposed to “low” magnitudes of invariance? Further
simulation research is needed to refine best practices for the align-
ment method.

Third, the practice of conducting and reporting measurement
invariance testing in applied and substantive literature in psychol-
ogy is limited despite the potential impacts of noninvariance on
downstream analyses (e.g., Boer et al., 2018). This may be par-
tially due to the lack of knowledge applied researchers have about
measurement invariance testing, which is complex to navigate
without advanced quantitative training. This tutorial was written to
address that shortcoming by making these analyses accessible and
incorporating modern open science practices into the process.

However, this is not the only reason these analyses are not often
reported. Measurement noninvariance can vary in pattern and
magnitude: In some cases, noninvariance will be trivial, whereas
in others, not accounting for it will change the conclusion (Schmitt
et al., 2011). More metascientific and methodological research is
needed to understand the breadth of ramifications noninvariance
can have in applied research and how researchers can and do use
the methods to inform theory. From this, better guidelines for
planning, use, and interpretation of such models can be developed.
Overall, transparency and reporting of measurement details is

lacking in the psychological literature (Flake & Fried, 2020; Flake
et al., 2017), and while methodologists can encourage applied
researchers to do more and do better, methodologists themselves
can also do more to demonstrate the practical importance of such
methods for applied researchers.

Recommendations for Improving Implementation

During the process of conducting the analyses for this illustra-
tion, we encountered two areas of improvement regarding the prac-
tical implementations of the traditional approach and alignment in
lavaan and Mplus that could be improved to facilitate measurement
invariance testing in psychology. First, the alignment method is
only available as originally specified by Asparouhov and Muthén
(2014) in Mplus. To date, there is no existing package in R that rep-
licates the alignment method functionality,* which makes accessi-
bility to the alignment method difficult for researchers without the
financial means to use Mplus. Second, the default software settings
for the traditional approach vary drastically across software and
within software (see supplementary materials on https://osf.io/
3p7n9/ for more details). Because of this, preregistrations and analy-
sis plans must be clear and specific in their model specifications
beyond broad statements—and ideally accompanied by the code to
be used for analysis. Moreover, we recommend that models be
specified manually in this code rather than by an automated or
default function.

Conclusion

Measurement invariance analyses are applicable to many areas
of psychology but are difficult to plan, conduct, and interpret. As
psychologists move toward more transparent research practices,
applying these practices to measurement invariance testing is an
upcoming area for improvement. The alignment method shows
exciting promise as an additional approach to assessing measure-
ment invariance, but it also presents challenges with model selec-
tion, interpretation, and appropriate use. Here, we compared
alignment to the traditional factor analytic approach to help
researchers decide which to use, and we provided recommendations
on how researchers can plan their measurement invariance analyses
in a transparent manner. We hope that this tutorial helps applied
researchers integrate measurement invariance assessment into their
programs of research and facilitate transparent practices, consistent
with the changing standards of contemporary research practices.

4 The sirt package in R is closest but uses a procedure inspired by the
alignment method in Mplus, requires manual configuration, and may
produce different results.
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Appendix A

Mathematical Treatment of Alignment Optimization

Here we present a mathematical treatment of alignment opti-
mization as per Asparouhov and Muthén (2014). First, recall
Equation 2, which represented the multiple-group confirmatory
factor model for the traditional factor analytic approach. MO is
estimated based on Equation 2 (MGCFA) where the factor in
each group is transformed to have a factor mean of zero and
variance of 1, o =0 and ¥, = 1 for every group g. Thus, in
MO, factor loadings and intercepts are freely estimated and can
be represented as follows:

(n g Otg)
V lPls’
Second, MO is mathematically reexpressed to treat measure-

ment invariance as an optimization problem. The end goal of

the alignment optimization is to produce a new model with
minimal measurement noninvariance, which we denoted as

M1. The optimization process starts with a reexpression of the
variance of items as

N = 3)

Var(yy,) = x;g\lfg = xf,g_yo 4)

and a reexpression of the mean (i.e., expectation or expected
value) of items as

E(Ypg) = vpg + A, 0 = Vpgo ®)
such that the loading estimates of the configural model MO,

denoted as A, . can be found by algebraically simplifying
Equation4,

kﬂg,O = }\I’g Ya s (0)

and the intercept estimates of the configural model MO,
denoted as v, 0, can then be found by substituting A,, from
Equation 6 into Equation 5.

s (o) %

Vo) = Vpo +
P8 Pg 07
vV g

For every set of group factor means o, and variances ¥, there
are intercept parameters v,, and loading parameters A, that
yield the same likelihood as MO, the configural model.
Therefore, we can obtain these loading parameters for M1,
denoted A, 1, by rearranging Equation 6

ng,o

Iy =

®)

and these intercepts, denoted v, 1, by rearranging Equation 7.

o ©

V 1 Vpg.0
P8, P8, /‘P
4

Third, Equations 8 and 9 can be used to create a total loss func-
tion F that represents total measurement noninvariance. Recall
that scalar invariance requires invariant loadings and intercepts.
F is thus the sum of the differences between factor loadings and
intercepts across groups. Therefore, factor means o, and varian-
ces ¥, for M1 can be selected that minimize the total loss func-
tion, and then they can be substituted into Equations 8 and 9 to
find the optimal loadings and intercepts of M 1. That is, the total
loss function F is minimized with respect to o and ‘¥, in order
to find the parameters for M1 that minimize total measurement
noninvariance. For some pair of groups g; and g»,

F= Z Z Wergof (Mpgit = Mpgsit)

P 81<8

A3 Waeaf pert = Vpert) (10)

P 81<&

In Equation 10, the differences between factor loadings and
intercepts are weighed by w, which is calculated by taking the
square root of the product of the sample sizes of g; and g,. This
is done so that larger groups contribute more to F, the total loss
function, than smaller groups, accommodating unequal group
sizes. Additionally, f represents the component loss function
(CLF), and these differences are scaled via the CLF. The CLF
has been used in rotation methods in exploratory factor analysis
to minimize differences in the loading matrix to find a solution
with the simplest structure (e.g., Jennrich, 2006). The align-
ment method uses the following CLF

f) =V v +e (11)

with some small positive value for € (e.g., .01). This specific
type of value is chosen so that the CLF has a continuous first
derivative, which mathematically simplifies the minimization
of the total loss function F. Overall, F' is minimized when there
are only a few large noninvariant parameters and many approx-
imately invariant parameters, so the presence of a few large
noninvariant parameters and many approximately invariant pa-
rameters is an assumption of alignment.

Fourth, M1 is identified by estimating all group factor means
and variances except for the first under the following constraint:

X X W, =1 (12)

The alignment optimization procedure therefore takes two
forms based on the decision to constrain the factor mean of the first
group or not. The factor mean and variance can either be fixed to O
and 1 respectively (FIXED alignment optimization), or the factor
mean can be estimated freely (FREE alignment optimization).

(Appendices continue)
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Appendix B

Measurement Invariance Analysis Plan Preregistration Example

This is an example of a preregistered measurement invariance
analysis plan. This example focuses on a series of statistical mod-
els and does not include other details about a study that would go
into a complete preregistration. General and detailed information
about preregistration is available at https://cos.io/prereg. The
example here corresponds to the Variables and Analysis Plan,
Statistical Models, and Inference Criteria sections of a full length
preregistration, template available at: https://osf.io/preprints/
metaarxiv/epgjd/.

Variables

Measured Variables

Grouping Variable

The grouping variable will be sex, as self-reported by partici-
pants (two groups: male, female). Nonbinary gender identities will
be excluded from analysis.

QOutcome Variable

The outcome variable will be consideration for future conse-
quences, as measured using the Consideration for Future
Consequences Scale (CFC; Strathman et al., 1994). The CFC
measures two future consequence constructs: a future concern
subfactor, which is measured with four items (e.g., “I am willing
to sacrifice my immediate happiness or well-being in order to
achieve future outcomes.”); and an immediate concern subfac-
tor, which is measured with 8 eight items (e.g., “I only act to sat-
isfy immediate concerns, figuring the future will take care of
itself.”). Items are rated on 5-point scales (1 = Extremely unchar-
acteristic, 5 = Extremely characteristic). We will only analyze
the immediate concern subscale.

Covariates

No covariates will be analyzed.

Indices

We will combine the eight immediate concern items from the
CFC to create a single measure of concern for immediate conse-
quences. We will use confirmatory factor analysis and alignment
optimization to estimate concern for immediate consequences fac-
tors scores from the eight items. If full scalar invariance is
achieved, then we will also take the mean of the eight immediate
concern items from the CFC to create a single, observed score
measure of concern for immediate consequences.

Analysis Plan

Summary

This analysis plan covers a two-group measurement invari-
ance analysis with two methods: (a) a multiple group confirma-
tory factor model (MGCFA), and (b) an alignment optimization.

It lists a series of decisions required for each method. Analysis
code corresponding to this analysis plan is available at https://
osf.io/3p7n9/.

Prerequisites for Methods

Evidence of Factor Structure

We will test a one-factor model for the CFC-immediate fac-
tor, consistent with literature. Model fit will be considered ac-
ceptable at CFI > .95, RMSEA < .06, and SRMR < .08 (Hu
& Bentler, 1999). The CFA will be identified using the marker
method with Q2 (i.e., loading of Q2 fixed to 1.00).

Sample Size

Each group should have a sample size of at least 400 for the
analysis to proceed (French & Finch, 2006; Meade & Bauer,
2007; Meade et al., 2008; Koziol & Bovaird, 2018).

Assumption Checks

Item-level distributions will be used to assess normality vis-
ually. If items are non-normal, robust maximum likelihood
estimation will be used with the Yuan-Bentler scaled chi-
squared statistic (MLR; Yuan & Bentler, 2000) and robust
standard errors for all CFAs and measurement invariance tests.

Research Goal

The research goal is to evaluate the measurement invari-
ance of the eight-item immediate concern subscale across sex
to ultimately compare mean scores (latent or observed) across
males and females.

MGCFA

Using multiple group confirmatory factor analysis, we will
compare latent means if partial but not full scalar invariance is
achieved. We will compare observed means if full scalar invar-
iance is achieved.

Alignment

We will use the alignment method to compare factor
means.

Model Identification

MGCFA

We will fix each group's anchor item loading to 1 and factor
mean to 0. As mentioned previously, we informally reviewed
the content of the items and selected the item Q2 as the anchor
item because we deemed it least likely to be noninvariant
across groups.

(Appendices continue)
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Alignment

We will fix the factor mean and variance to 0 and 1, respec-
tively, because we are only comparing two groups (i.e., the
FIXED alignment configuration).

Model Evaluation

MGCFA

For all models, we will report the chi-square model fit test
and multiple additional fit indices. To evaluate the overall fac-
tor model across both groups as well as the baseline configural
model, we will report the total model chi-square and the CFI,
RMSEA, and SRMR. If the chi-square test is significant, which
is likely given the large sample size, we will deem the overall
factor model and configural model to have acceptable fit to
move forward with invariance testing if CFI > .95, RMSEA <
.06, and SRMR < .08 (Hu & Bentler, 1999). Then, to deter-
mine whether metric, scalar, and strict measurement invariance
are supported, we will report the chi-squared model fit differ-
ence tests and model fit index differences between successive
model. We will conclude that the next level of invariance was
not supported if the chi-square test is significant at o = .05 and/
or the higher-level model increases RMSEA by more than .015
or decreases CFI by more than .01 (Chen, 2007). Thus, if the
two criteria disagree, we will return to the level of measure-
ment invariance that failed and conduct a partial measurement
invariance analysis.

Partial Invariance

Partial invariance analyses will use a backward-selection
approach using modification indices to identify noninvariant
items. Specifically, we will free the item parameter with the
highest modification index first, then rerun the model with that

freed. We will repeat this process until partial invariance is
established (i.e., until the models no longer differ in fit) or
modification indices no longer indicate significant improve-
ments in model fit (MIs < 3.84, the critical value for chi-
squared tests for df = 1 at o =.05). If we successfully establish
a scalar partial invariance model, we will use it to compare the
group factor means. We will also report a partial strict invari-
ance model by constraining the uniquenesses of the invariant
items to equality but will not continue further.

Alignment

To evaluate model fit for the baseline configural model, we
will use the same criteria for the configural model using
MGCFA. To evaluate the performance of the alignment opti-
mization (i.e., determine that most items were approximately
invariant), we will follow Muthén and Asparouhov’s (2014)
rule of thumb in which no more than 25% of parameters are
noninvariant to conclude good performance. If we conclude
good performance, we will use the aligned model to compare
factor means.

If more than 25% of items are deemed noninvariant based
on the item-level significance tests, we will examine the param-
eter differences to determine whether the amount of noninvar-
iance is meaningful. For noninvariant intercepts, we will deem
any differences meaningful if they exceed .25 points (5% of
the 5-point scale). If the amount of noninvariance is not mean-
ingful, we will use the aligned model to compare factor means.
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