Galileo Galilei moved from Padova (Padua) to Florence in 1610 primarily for career advancement and personal reasons. Here's why:

1.Patronage from the Medici Family – In 1610, Galileo discovered four moons of Jupiter using his improved telescope. He dedicated this discovery to Cosimo II de' Medici, the Grand Duke of Tuscany, and named the moons the *Medicean Stars* in his honor. As a result, Cosimo II offered him a prestigious position as the Chief Mathematician and Philosopher to the Grand Duke of Tuscany in Florence.
2.Better Financial and Social Status – In Padua, Galileo was a professor at the University of Padua (part of the Republic of Venice), but his salary and status were relatively modest. The Medici court provided higher pay, security, and prestige without requiring him to teach.

3.More Time for Research – In Florence, he had more freedom to focus on scientific research rather than lecturing at a university, which allowed him to pursue his astronomical studies further.

4.Proximity to Influential Figures – Florence was a major cultural and intellectual hub, allowing him to engage with powerful scholars, artists, and members of the Catholic Church.

However, moving to Florence also exposed Galileo to increased scrutiny from the Roman Catholic Church, which later led to conflicts over his support for the heliocentric model of the universe.

THE WORK

The work "Resistenza e Liberazione" by Jannis Kounellis was commissioned in 1994 and inaugurated on 29 May 1995. It was originally intended to be inaugurated by 25 April for the fiftieth anniversary of the end of fascism. The University of Padua was eager to commemorate the heroic deeds of Ezio Franceschini. Concetto Marchesi and Egidio Meneghetti, three of its professors who played an important part in the Resistance. For the artist himself, the site-

specific installation marked an important stage in his

Less of a talk and more of a workshop

Bermuda Triangle of Causality

Experimental Paradigm (Dogma)

Network (Anti-Factor) Paradigm (Dogma)

Personality (Factor) Paradigm (Dogma)

Personality Item Sum Scores - Not Causal, Only Prediction

Structural Equation Modeling: No Dogma -You need to specify a theory and have data that can test the theory

Measurement Model of Neuroticism Facet 3 – Trait Depression CFI = .866, RMSEA = .157 (BAD FIT!!!)

Confirmatory Factor Analysis

Worst label for a method.

Misconception that the method can only be used to confirm a theoretical model.

EFA does not allow for correlated residuals. So you can never use EFA to explore the data to fit a model with correlated residuals.

Let's call it TFA (Theoretical factor analysis)

Science: Theory -> Data -> Theory -> Data

NTTH Statements					
МТ I II .	Statements				
N32	WITH N31	5895.696	-0.136	-0.136	-0.249
N33	WITH N31	40353.414	0.360	0.360	0.644
N33	WITH N32	5722.277	-0.130	-0.130	-0.258
N34	WITH N31	10849.357	-0.198	-0.198	-0.331
N34	WITH N32	27935.834	0.303	0.303	0.565
N34	WITH N33	8709.892	-0.172	-0.172	-0.311
N35	WITH N31	6738.165	0.199	0.199	0.237
N35	WITH N32	4138.067	-0.146	-0.146	-0.194
N35	WITH N33	7527.075	0.200	0.200	0.259
N35	WITH N34	3744.872	-0.150	-0.150	-0.182
N37	WITH N36	2544.752	0.141	0.141	0.142
N38	WITH N31	13105.885	0.246	0.246	0.336
N38	WITH N32	4941.091	-0.142	-0.142	-0.216
N38	WITH N33	9092.987	0.196	0.196	0.290
N38	WITH N34	5301.703	-0.159	-0.159	-0.220
N38	WITH N35	2658.245	0.146	0.146	0.144
N39	WITH N31	9046.128	-0.169	-0.169	-0.289
N39	WITH N32	4460.337	0.112	0.112	0.214
N39	WITH N33	8057.958	-0.153	-0.153	-0.284
N39	WITH N34	5279.928	0.131	0.131	0.228
N39	WITH N38	2233.804	-0.097	-0.097	-0.137
N3X	WITH N31	6347.065	-0.143	-0.143	-0.239
N3X	WITH N32	3004.273	0.093	0.093	0.173
N3X	WITH N33	7052.499	-0.145	-0.145	-0.262
N3X	WITH N34	5016.406	0.130	0.130	0.219
N3X	WITH N35	4822.147	-0.163	-0.163	-0.197
N3X	WITH N39	14779.868	0.208	0.208	0.362

Measurement Model of Neuroticism Facet 3 – Trait Depression CFI = .912, RMSEA = .129 (Better, but still bad fit)

Measurement Model of Neuroticism Facet 3 – Trait Depression CFI = .966, RMSEA = .040 (Good Fit!!!)

n39 – feel comfortable with myself
n3x – am very pleased with myself
n32 – dislike myself
n34 – have a low opinion of myself

Measurement Model of Neuroticism Facet 3 – Trait Depression CFI = .966, RMSEA = .040 (Good Fit!!!)

n31 – often feel blue n33 – am often down in the dumps n35 – have frequent mood swings

n38 – seldom feel blue

n36 – feel desperate n37 – feel that my life lacks direction

Theoretical Factor Analysis

The items of the Trait Depressiveness Scale reflect two related factors

- Depressiveness
- Low Self-Esteem

Solution 1: Change Construct/Label (Negative Feelings/Beliefs about Self)

Solution 2: Select Items that measure the intended construct: Depressiveness

n31 – often feel blue n33 – am often down in the dumps n35 – have frequent mood swings n38 – seldom feel blue

Network Model Stupid: Just a visual representation of the observed correlations No causal theory, Ignores Measurement Error

