
Open Science Starter Pack
Filippo Gambarota

@Winter School 4Ms

February 17, 2025

Materials
The materials will be available on the WS website/repository. But you can access the
slides and the materials at:

github.com/stat-teaching/open-science-starter-pack

https://github.com/stat-teaching/open-science-starter-pack

About me…
I am a post-doctoral researcher in Psychometrics and a Clinical Psychologist at
the Department of Developmental Psychology and Socialization, University of
Padova

My research interests are meta-analysis, statistical methods for replicability,
Monte Carlo simulations for power analysis and R programming.

I did a PhD in Experimental Psychology about neural correlates of unconscious
processing

If you want to know more about my work check my website
filippogambarota.github.io

https://filippogambarota.github.io/

> Doing research is hard…

Doing research is hard…
you have to read papers, textbooks, slides and track information

you have to plan your experiment or research

you have to collect, organize and manage your data

you have to analyze data, create figures and tables

you have to write reports, papers, slides, etc.

you have to keep track of reviews from reviewers, co-authors, supervisor, etc.

Doing research is hard…

Doing reproducible research is even harder 😱
organize and share data in a comprehensive format

choose a future-proof place to share data

analyze data using reproducible tools i.e., scripting

create research reports in multiple formats: slides, reports, papers

> Examples of not optimal data sharing

Sharing the dataset
You find a nice paper with an interesting dataset. There is an Open Science
Framework link. Awesome! Let’s open it:

Sharing the dataset
Amazing! there is a single file on the OSF repository. Then you open the dataset:

x1 x2 x3 x4 x5 x6 x7

0.398 13.912 a 0 -0.678 0.876 -0.205

-0.143 1.094 c 0 0.706 0.252 1.882

-0.253 4.898 c 0 0.474 -0.563 0.325

-1.227 14.717 b 0 -0.513 -1.137 -0.136

...

0.937 5.2 b 1 2.087 0.16 -0.172

-0.019 0.582 b 0 -2.164 -0.519 -1.911

0.58 14.435 a 1 -1.641 -1 -0.229

2.011 13.175 a 0 -0.866 1.761 -0.696

Sharing the dataset
Where is the data-dictionary? What are 0 and 1? How missing values are coded?

Sharing is important, but do it appropriately!
Putting a dataset on OSF is not doing reproducible research. The dataset need to
be usable

Create a data dictionary with variables description and important details

Add a README file with important information

Prefer a plain-text format e.g., csv, txt, etc.

datadictionary
The package can be used to create a data dictionary starting from a
dataframe.

datadictionary

library(datadictionary)

You can also specify labels with a named vector
iris.labels <- c(Sepal.Length = "Sepal length in mm",
 Sepal.Width = "Sepal width in mm",
 Petal.Length = "Petal length in mm",
 Petal.Width = "Petal width in mm",
 Species = "Species of iris")
create_dictionary(iris, var_labels = iris.labels)

https://cran.r-project.org/web/packages/datadictionary/datadictionary.pdf

datadictionary
Then you can visualize, put in into a document or save as a separated file.

#> item label class summary value
#> 1 Rows in dataset 150
#> 2 Columns in dataset 5
#> 3 Sepal.Length Sepal length in mm numeric mean 6
#> 4 median 6
#> 5 min 4.3
#> 6 max 7.9
#> 7 missing 0
#> 8 Sepal.Width Sepal width in mm numeric mean 3
#> 9 median 3
#> 10 min 2
#> 11 max 4.4
#> 12 missing 0
#> 13 Petal.Length Petal length in mm numeric mean 4

> Reproducibility starter pack

Reproducibility starter pack 👷
A general purpose (or flexible enough) programming language such as or

A literate programming framework to integrate code and text

A version control system to track projects

An online repository for future-proof sharing

Disclaimers
The best tool is the tool that does the job.

But there are some features that makes a tool better in terms of reproducibility,
reducing the probability of errors and improve your coding skills.

There is nothing bad about using SPSS, Jasp or Jamovi. The real problem is that
using a point-and-click software reduce the reproducibility. If you can use the
scripting part, whatever the tool.

A general suggestion is to invest some of your time learning/improving a
programming language for data pre-processing, analysis and reporting (tables,
figures, etc.)

> R Programming Language

R
R is a free software environment for statistical computing and graphics.

(TBH) It is not a proper general purpose programming language (such as C++ or
Python).

R packages allow to do almost everything (file manager, image processing,
webscraping, sending emails, coffee 😄, etc.)

It is free and open-source

The community is wide, active thus solving problems is very easy

Force you to learn scripting but the are R-based GUI software (e.g., JAMOVI)

R - CRAN
The CRAN is the repository where package developers upload their packages and
other users can install them.

Contributed Packages

Available Packages

Currently, the CRAN package repository features 22056 available packages.

Table of available packages, sorted by date of publication

Table of available packages, sorted by name

CRAN Task Views aim to provide some guidance which packages on CRAN are relevant for tasks
related to a certain topic. They provide tools to automatically install all packages from each view.
Currently, 46 views are available.

Installation of Packages

Please type help("INSTALL") or help("install.packages") in R for information on how to install
packages from this repository. The manual R Installation and Administration (also contained in the R
base sources) explains the process in detail.

Package Check Results

All k d l l hi i D bi GNU/Li F d OS (f l

As the saying goes: if something exist, there is an R package for doing it! 😄

https://cran.r-project.org/web/packages/available_packages_by_date.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/views/
https://cran.r-project.org/manuals.html#R-admin
http://www.debian.org/
http://www.fedoraproject.org/

R - PYPL Index

Source: https://pypl.github.io/PYPL.html

https://pypl.github.io/PYPL.html

R - PYPL Index
The popularity is on a different scale compared to Python but still increasing:

Source: https://pypl.github.io/PYPL.html

https://pypl.github.io/PYPL.html

R or Python?
Python is a very general-purpose language more powerful for general tasks.

I find python very useful for programming experiments, image processing,
automatizing tasks and interacting with the operating system

R is still a little bit superior in terms of data manipulation and visualization.
Python is faster and more powerful for complex models (e.g., machine learning,
etc.)

Positron
Sometimes Python is not so easy to setup. In addition is not as interactive as R (i.e.,
line by line evaluation). Posit (ex. R Studio) recently created that is a new
IDE working with R and Python at the same way.

Positron

https://positron.posit.co/

Modern R
For purist programmers, R is weird: arrays starts with 1, object-oriented
programming is hidden, a lot of built-in vectorized functions, etc. The

 book is really funny showing the strange R-stuff.
The R

Inferno

Despite the weirdness, R is widely used because it is intuitive (for non-
programmers) and made for statistics and data manipulation

R is a language and as in spoken languages you can elegant, rude, ambiguous,
funny, etc.

There are some tips to improve the readability and reproducibility of your code

https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf

Functional Programming
In computer science, functional programming is a programming paradigm
where programs are constructed by applying and composing functions.

Despite R can be used both with an imperative and object-oriented approach,
the functional side is quite powerful.

The basic idea is to decompose your code into small, testable and re-usable
functions

Functional Programming, example…
We have a dataset (mtcars) and we want to calculate the mean, median, standard
deviation, minimum and maximum of each column and store the result in a table.

head(mtcars)

#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

str(mtcars)

#> 'data.frame': 32 obs. of 11 variables:
#> $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#> $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
#> $ disp: num 160 160 108 258 360 ...
#> $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
#> $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#> $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
#> $ qsec: num 16.5 17 18.6 19.4 17 ...
#> $ vs : num 0 0 1 1 0 1 0 1 1 1 ...

#> $ am : num 1 1 1 0 0 0 0 0 0 0 ...
#> $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
#> $ carb: num 4 4 1 1 2 1 4 2 2 4 ...

Functional Programming
The standard (~imperative) option is using a for loop, iterating through columns,
calculate the values and store into another data structure.

ncols <- ncol(mtcars)
means <- medians <- mins <- maxs <- rep(0, ncols)

for(i in 1:ncols){
 means[i] <- mean(mtcars[[i]])
 medians[i] <- median(mtcars[[i]])
 mins[i] <- min(mtcars[[i]])
 maxs[i] <- max(mtcars[[i]])
}

results <- data.frame(means, medians, mins, maxs)
results$col <- names(mtcars)

results

#> means medians mins maxs col
#> 1 20.090625 19.200 10.400 33.900 mpg
#> 2 6.187500 6.000 4.000 8.000 cyl
#> 3 230.721875 196.300 71.100 472.000 disp
#> 4 146.687500 123.000 52.000 335.000 hp

#> 5 3.596563 3.695 2.760 4.930 drat
#> 6 3.217250 3.325 1.513 5.424 wt
#> 7 17.848750 17.710 14.500 22.900 qsec
#> 8 0.437500 0.000 0.000 1.000 vs
#> 9 0.406250 0.000 0.000 1.000 am
#> 10 3.687500 4.000 3.000 5.000 gear
#> 11 2.812500 2.000 1.000 8.000 carb

Functional Programming
The main idea is to decompose the problem writing a function and loop over the
columns of the dataframe:

summ <- function(x){
 data.frame(means = mean(x),
 medians = median(x),
 mins = min(x),
 maxs = max(x))
}
ncols <- ncol(mtcars)
dfs <- vector(mode = "list", length = ncols)

for(i in 1:ncols){
 dfs[[i]] <- summ(mtcars[[i]])
}

Functional Programming
results <- do.call(rbind, dfs)
results

#> means medians mins maxs
#> 1 20.090625 19.200 10.400 33.900
#> 2 6.187500 6.000 4.000 8.000
#> 3 230.721875 196.300 71.100 472.000
#> 4 146.687500 123.000 52.000 335.000
#> 5 3.596563 3.695 2.760 4.930
#> 6 3.217250 3.325 1.513 5.424
#> 7 17.848750 17.710 14.500 22.900
#> 8 0.437500 0.000 0.000 1.000
#> 9 0.406250 0.000 0.000 1.000
#> 10 3.687500 4.000 3.000 5.000
#> 11 2.812500 2.000 1.000 8.000

Functional Programming
The actual real functional way require using the built-in iteration tools *apply. In
this way you avoid writing the verbose for loop.

results <- lapply(mtcars, summ)
results <- do.call(rbind, results)
results

#> means medians mins maxs
#> mpg 20.090625 19.200 10.400 33.900
#> cyl 6.187500 6.000 4.000 8.000
#> disp 230.721875 196.300 71.100 472.000
#> hp 146.687500 123.000 52.000 335.000
#> drat 3.596563 3.695 2.760 4.930
#> wt 3.217250 3.325 1.513 5.424
#> qsec 17.848750 17.710 14.500 22.900
#> vs 0.437500 0.000 0.000 1.000
#> am 0.406250 0.000 0.000 1.000
#> gear 3.687500 4.000 3.000 5.000
#> carb 2.812500 2.000 1.000 8.000

Functional Programming, *apply
The *apply family is one of the best tool in R. The idea is pretty simple: apply a
function to each element of a list.

The powerful side is that in R everything can be considered as a list. A vector is a
list of single elements, a dataframe is a list of columns etc.

Internally, R is still using a for loop but the verbose part (preallocation, choosing
the iterator, indexing) is encapsulated into the *apply function.

means <- rep(0, ncol(mtcars))
for(i in 1:length(means)){
 means[i] <- mean(mtcars[[i]])
}

the same with sapply
means <- sapply(mtcars, mean)

for loops are bad?
for loops are the core of each operation in R (and in every programming language).
For complex operation thery are more readable and effective compared to *apply.
In R we need extra care for writing efficent for loops.

Extremely slow, no preallocation:

Very fast, no difference compared to *apply

res <- c()
for(i in 1:1000){
 # do something
 res[i] <- x
}

With *apply you can do crazy stuff!
funs <- list(mean = mean, sd = sd, min = min, max = max, median = median)
sapply(funs, function(f) lapply(mtcars, function(x) f(x)))

#> mean sd min max median
#> mpg 20.09062 6.026948 10.4 33.9 19.2
#> cyl 6.1875 1.785922 4 8 6
#> disp 230.7219 123.9387 71.1 472 196.3
#> hp 146.6875 68.56287 52 335 123
#> drat 3.596563 0.5346787 2.76 4.93 3.695
#> wt 3.21725 0.9784574 1.513 5.424 3.325
#> qsec 17.84875 1.786943 14.5 22.9 17.71
#> vs 0.4375 0.5040161 0 1 0
#> am 0.40625 0.4989909 0 1 0
#> gear 3.6875 0.7378041 3 5 4
#> carb 2.8125 1.6152 1 8 2

Why functional programming?
We can write less and reusable code that can be shared and used in multiple
projects

The scripts are more compact, easy to modify and less error prone (imagine that
you want to improve the summ function, you only need to change it once instead of
touching the for loop)

Functions can be easily and consistently documented (see
documentation) improving the reproducibility and readability of your code

roxygen

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

More about functional programming in R
Advanced R by Hadley Wickham, section on Functional Programming
()https://adv-r.hadley.nz/fp.html

Hands-On Programming with R by Garrett Grolemund https://rstudio-
education.github.io/hopr/

Hadley Wickham: The Joy of Functional Programming (for Data Science)

Bruno Rodrigues Youtube Channel

https://adv-r.hadley.nz/fp.html
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://www.youtube.com/watch?v=bzUmK0Y07ck
https://www.youtube.com/@brodriguesco/videos

A more advanced approach, R packages
R packages are not only on CRAN. You can (pretty) easily create a package and put it
on Github. For example, if you keep using some functions in your project, write a
general version and put them into a package.

github.com/filippogambarota/filor

https://github.com/filippogambarota/filor

A more advanced approach, R packages
If your functions are project-specific you can define them into your scripts or write
some R scripts only with functions and source() them into the global environment.

And inside utils.R you have some functions:

Then you can load the function using source("R/utils.R) at the beginning of
analysis.R:

project/
├─ R/
│ ├─ utils.R
├─ analysis.R

myfun <- function(x) {
 # something
}

source("R/utils.R")

Analysis project as R package
The R project structure is really interesting to organize a data analysis pipeline. In
fact, you can use the project structure. Vuorre & Crump () and Marwick et al.
() describe in details the idea.

The general approach is:

2021
2018

1. Create an R Studio project .Rproj file

2. Create your directories, put scripts, data, etc.

3. Create an R/ folder and put your scripts with functions

4. Create a DESCRIPTION file using usethis::use_description(check_name =
FALSE)

5. Then you can load your functions without source and with devtools::load_all()
(same as library())

> Let’s see an example!

The Tidy approach
The tidyverse is a series of high-quality R packages to do modern data science:

data manipulation (dplyr, tidyr)

plotting (ggplot2)

reporting (rmarkdown)

string manipulation (stringr)

functionals (purrr)

…

The Tidy approach - Pipes
One of the great improvement from the tidyverse is the usage of the pipe %>% now
introduced in base R as |>. You will se these symbols a lot when looking at modern
R code.

The idea is very simple, the standard pattern to apply a function is
function(argument). The pipe can reverse the pattern as argument |> function().
Normally when we apply multiple functions progressively the pattern is this:

x <- rnorm(100)
x <- round(x, 3)
x <- abs(x)
x <- as.character(x)

The Tidy approach - Pipes
When using the pipe, we remove the redundand assignment <- pattern:

The pipe can be read as “from x apply round, then abs, etc.”. The first argument of the
piped function is assumed to be the result of the previus call.

x <- rnorm(100)
x |>
 round(3) |>
 abs() |>
 as.character()

More about the Tidy approach
The tidy approach contains tons of functions and packages. The overall philosophy
can be deepen in the R for Data Science book.

https://r4ds.hadley.nz/

https://r4ds.hadley.nz/

ggplot2
Only an quick mention to ggplot2 (part of the tidyverse)
that is an amazing package for data visualization following the piping and tidy
approach. Is the implementation of the grammar of graphics idea.

https://ggplot2-book.org/

library(tidyverse)

iris |>
 mutate(wi = runif(n())) |>
 ggplot(aes(x = Sepal.Length, y = Petal.Width, color = Species)) +
 geom_point(aes(size = wi)) +
 geom_smooth(method = "lm", se = FALSE)
 guides(size = "none") +
 theme_minimal(15)

https://ggplot2-book.org/

ggplot2

Base R version
More verbose, more hard coding, more steps and intermediate objects.

iris_l <- split(iris, iris$Species)
lms <- lapply(iris_l, function(x) lm(Petal.Width ~ Sepal.Length, data = x))

plot(iris$Sepal.Length,
 iris$Petal.Width,
 col = as.numeric(iris$Species), pch = 19)

abline(lms[[1]], col = 1, lwd = 2)
abline(lms[[2]], col = 2, lwd = 2)
abline(lms[[3]], col = 3, lwd = 2)

legend("topleft", legend = levels(iris$Species), fill = 1:3)

Base R version

More on ggplot2
The ggplot2 book is a great resource to produce high-
quality, publication ready plots. Clearly, the advantage of producing the figures
entirely writing code are immense in terms of reusability and reproducibility.

https://ggplot2-book.org/

https://ggplot2-book.org/

Something crazy in the tidyverse
Without going into details, I want to show you a very interesting approach that you
can do with the tidyverse functions.

Let’s assume you want to do a leave-one-out analysis thus fitting the same models
on a dataset, removing one observation at time.

You can do it in base R with a loop or other methods, but the see so-called many-
models approach. See and

.
https://r4ds.had.co.nz/many-models.html

https://www.youtube.com/watch?v=rz3_FDVt9eg

https://r4ds.had.co.nz/many-models.html
https://www.youtube.com/watch?v=rz3_FDVt9eg

Something crazy in the tidyverse
Let’s define some functions:

leave1out <- function(data){
 idx <- 1:nrow(data)
 ll <- lapply(idx, function(i) data[-i,])
 names(ll) <- paste0("no", idx)
 c(no0 = list(data), ll)
}

fit_model <- function(data){
 lm(Sepal.Length ~ Petal.Width, data = data)
}

Something crazy in the tidyverse
dat <- tibble(data = leave1out(iris[1:20,]))
dat |>
 mutate(removed = names(data)) |>
 head()

#> # A tibble: 6 × 2
#> data removed
#> <named list> <chr>
#> 1 <df [20 × 5]> no0
#> 2 <df [19 × 5]> no1
#> 3 <df [19 × 5]> no2
#> 4 <df [19 × 5]> no3
#> 5 <df [19 × 5]> no4
#> 6 <df [19 × 5]> no5

Something crazy in the tidyverse
dat |>
 mutate(removed = names(data)) |>
 mutate(fit = map(data, fit_model),
 results = map(fit, broom::tidy)) |>
 head()

#> # A tibble: 6 × 4
#> data removed fit results
#> <named list> <chr> <named list> <named list>
#> 1 <df [20 × 5]> no0 <lm> <tibble [2 × 5]>
#> 2 <df [19 × 5]> no1 <lm> <tibble [2 × 5]>
#> 3 <df [19 × 5]> no2 <lm> <tibble [2 × 5]>
#> 4 <df [19 × 5]> no3 <lm> <tibble [2 × 5]>
#> 5 <df [19 × 5]> no4 <lm> <tibble [2 × 5]>
#> 6 <df [19 × 5]> no5 <lm> <tibble [2 × 5]>

Something crazy in the tidyverse
dat |>
 mutate(removed = names(data)) |>
 mutate(fit = map(data, fit_model),
 results = map(fit, broom::tidy)) |>
 unnest(results) |>
 ggplot(aes(x = removed, y = estimate)) +
 geom_point() +
 geom_line() +
 facet_wrap(~term, scales = "free")

Something crazy in the tidyverse

Quick tables

Characteristic N = 1501

Sepal.Length 5.80 (5.10, 6.40)

Sepal.Width 3.00 (2.80, 3.30)

Petal.Length 4.35 (1.60, 5.10)

Petal.Width 1.30 (0.30, 1.80)

Species

 setosa 50 (33%)

 versicolor 50 (33%)

 virginica 50 (33%)
1 Median (Q1, Q3); n (%)

gtsummary::tbl_summary(iris)

Quick tables from models

 Sepal.Length

Predictors Estimates CI p

(Intercept) 4.78 4.63 – 4.92 <0.001

Petal Width 0.89 0.79 – 0.99 <0.001
Observations 150
R2 / R2 adjusted 0.669 / 0.667

fit <- lm(Sepal.Length ~ Petal.Width, data = iris)
sjPlot::tab_model(fit)

Quick tables from models

Characteristic Beta 95% CI1 p-value

Petal.Width 0.89 0.79, 0.99 <0.001
1 CI = Confidence Interval

gtsummary::tbl_regression(fit)

> Tips on writing good R code

The tidyverse style guide
It’s a series of best practices and suggestion to create consistent and readable R
code.

http://style.tidyverse.org/

http://style.tidyverse.org/

What is good (R) code
organized scripts

commenting and documenting

consistent and self-explanatory variables and functions naming

Organized scripts
Global operations at the beginning of the script:

loading datasets

loading packages

changing general options (options())

packages
library(tidyverse)
library(lme4)

options

options(scipen = 999)

loading data
dat <- read.csv(...)

Functions to avoid repetition
Avoid repeating the same operation multiple times in the script. The rule is, if you
are doing the same operation more than two times, write a function.

A function can be re-used, tested and changed just one time affecting the whole
project.

Comments, comments and comments…
Write the code for your future self and for others, not for yourself right now.

Try to open a (not well documented) old coding project after a couple of years and
you will understand :)

Invest time in writing more comprehensible and documented code for you and
others.

> Literate Programming

Literate Programming1

For example jupyter notebooks, R Markdown and now Quarto are literate
programming frameworks to integrate code and text.

Donald Knuth first defined literate programming as a script, notebook, or
computational document that contains an explanation of the program logic in a
natural language, interspersed with snippets of macros and source code, which
can be compiled and rerun

Heading

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor

Plot Code

Markup

Markup

...

...

Literate Programming, the markup language
Beyond the coding part, the markup language is the core element of a literate
programming framework. The idea of a markup language is separating the result
from what you actually write. Some examples are:

LaTeX

HTML

Markdown

XML

…

LaTeX 1

HTML
<!DOCTYPE html>
<html>
<body>

<h1>My First Heading</h1>

Lorem Ipsum è un testo segnaposto utilizzato nel settore della tipografia e della stam

<h2>My Second Heading</h2>

Lorem Ipsum è un testo segnaposto utilizzato nel settore della tipografia e della stam

Lorem Ipsum è considerato il testo segnaposto standard sin dal sedicesimo secolo, quan

tipografo prese una cassetta di caratteri e li assemblò per preparare un testo campion

È sopravvissuto non solo a più di cinque secoli, ma anche al passaggio alla videoimpag

Markdown1

Markdown Live Preview Reset Copy Sync scroll

Markdown syntax guide

Headers

This is a Heading h1

This is a Heading h2

This is a Heading h6

Emphasis

This text will be italic
This will also be italic

Markdown syntax guide

Headers

This is a Heading h1
This is a Heading h2
This is a Heading h6

Emphasis

This text will be italic
This will also be italic

This text will be bold
__This will also be bold__

You **can** combine them

Lists

Unordered

* Item 1
* Item 2
* Item 2a
* Item 2b
 * Item 3a

* Item 3b

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

https://markdownlivepreview.com/
https://github.com/tanabe/markdown-live-preview

Markdown
Markdown is one of the most popular markup languages for several reasons:

easy to write and read compared to Latex and HTML

easy to convert from Markdown to basically every other format using pandoc

easy to implement new features

Markdown (source code)
Markdown

Markdown is one of the most popular markup languages for several reasons:

- easy to write and read compared to Latex and HTML
- easy to convert from Markdown to basically every other format using `pandoc`
- easy to implement new features

Also the source code can be used, compared to Latex or HTML, to take notes and
read. Latex and HTML need to be compiled otherwise they are very hard to read.

What’s wrong about Microsoft Word?
MS Word is a WYSIWYG (what you see is what you get editor) that force users to think
about formatting, numbering, etc. Markup languages receive the content (plain text)
and the rules and creates the final document.

What’s wrong about Microsoft Word?
Beyond the pure writing process, there are other aspects related to research data.

writing math formulas

reporting statistics in the text

producing tables

producing plots

In MS Word (or similar) we need to produce everything outside and then manually
put figures and tables.

The solution… Quarto
Quarto () is the evolution of R Markdown that integrate a
programming language with the Markdown markup language. It is very simple but
quite powerful.

https://quarto.org/

https://quarto.org/

Basic Markdown
Markdown can be learned in minutes. You can go to the following link

 and try to understand
the syntax.
https://quarto.org/docs/authoring/markdown-basics.html

https://quarto.org/docs/authoring/markdown-basics.html

> Let’s see a practical example!

More about Quarto and R Markdown
The topic is extremely vast. You can do everything in Quarto, a website, thesis, your
CV, etc.

Yihui Xie - R Markdown Cookbook https://bookdown.org/yihui/rmarkdown-
cookbook/

Yihui Xie - R Markdown: The Definitive Guide
https://bookdown.org/yihui/rmarkdown/

Quarto documentation https://quarto.org/docs/guide/

https://bookdown.org/yihui/rmarkdown-cookbook/
https://bookdown.org/yihui/rmarkdown-cookbook/
https://bookdown.org/yihui/rmarkdown/
https://quarto.org/docs/guide/

Writing papers, papaja

https://github.com/crsh/papaja

https://github.com/crsh/papaja

Writing papers, apaquarto

https://github.com/wjschne/apaquarto

https://github.com/wjschne/apaquarto

Collaborating! (TBH not so easy)
The trackdown package can be used to collaborate on Rmd or qmd documents using
Google Docs.

https://github.com/ClaudioZandonella/trackdown

https://github.com/ClaudioZandonella/trackdown

Collaborating! Overleaf
With Overleaf you can collaborate on .tex documents but also .Rnw documents. No
Rmd or qmd unfortunately. See an .example document

https://www.overleaf.com/project/6759ac59ce1401a5fd86791b

> Git and Github

Git and Github
The basic idea is to track changes within a folder, assign a message and eventually
a tag to a specific version obtaining a version hystory. The version history is
completely navigable, you can go back to a previous version of the code.

The are advanced features like branches for creating an independent version of
the project to test new features and then merge into the main streamline.

The entire (local) Git project can be hosted on Github to improve collaboration.
Other people or collaborators can clone the repository and push their changes to
the project.

> Veeeery basic Git workflow

Veeeery basic Git workflow
After installing Git, you can start a new repository opening a terminal on a folder
and typing git init. The folder is now a git project you can notice by the hidden
.git folder.

Then you can add files to the staging area. Basically these files are ready to be
committed i.e. “written” in the Git history.

Finally you can commit the modified version of the file using git commit -m
message

you can see the Git hystory with all your commits:

cd ~/some/folder
git init

git add file1.txt
git add . # add everyting

git commit -m "my first amazing commit"

git log

Github
Imagine to put everyting into a server with nice viewing options and advanced
features. Github is just an hosting service for your git folder.

You can create an empty repository on Github named git-test. Now my repo has
the path git@github.com:filippogambarota/git-test.git.

Now our local repository is linked with the remote repository. Every time we do git
push our local commits will be uploaded.

If you worked on the repository from another machine or a colleague add some
changes, you can do git pull and your local machine will be updated.

The repository git-test is online and can be seen here .

git remote add origin git@github.com:filippogambarota/git-test.git
git push

filippogambarota/git-test

https://github.com/filippogambarota/git-test

Github
An now let’s see on Github the result:

More about Git and Github
There are a lot of resources online:

The Open Science Manual - Zandonella and Massidda - and chapters.Git Github

https://agripongit.vincenttunru.com/

https://git-scm.com/docs/gittutorial

https://arca-dpss.github.io/manual-open-science/git-chapter.html
https://arca-dpss.github.io/manual-open-science/github-chapter.html
https://agripongit.vincenttunru.com/
https://agripongit.vincenttunru.com/

> Open Science Framework

Open Science Framework

Is a great tool to upload and share materials with others and collaborate on a
project. Similarly to Github you can track the changes made to a project.

The great addition is having a DOI thus the project is persistently online and can be
cited.

It is now common practice to create a OSF project supporting a research paper and
put the link within the paper containing supplementary materials, raw data, scripts
etc.

OSF is a free, open platform to support your research and enable collaboration.

Open Science Framework
It’s very easy to create a new project, then you simply need to add files and share it.

The project can be accessed here (depending on the visibility) .https://osf.io/yf9tg/

https://osf.io/yf9tg/

Open Science Framework
OSF and Github
An interesting feature is linking a Github repository to OSF. Now all changes made
on Github (easier to manage) are mirrored into OSF. You can easily work in Github
for the coding part and use OSF to upload other data or information and to assign a
DOI to the project.

Preprints
OSF is also linked to a popular service for preprints called PsyArXiv

 thus you can link a preprint to an OSF project.https://psyarxiv.com/

https://psyarxiv.com/

More on OSF
https://help.osf.io/article/342-getting-started-on-the-osf

https://arca-dpss.github.io/manual-open-science/osf-chapter.html

More on reproducibility
In general, I highly suggest the online book The Open Science Manual

 written by my friend Claudio Zandonella and
Davide Massidda where these and other topics are explained in details:

https://arca-
dpss.github.io/manual-open-science/

https://arca-dpss.github.io/manual-open-science/
https://arca-dpss.github.io/manual-open-science/

References
Marwick, B., Boettiger, C., & Mullen, L. (2018). Packaging data analytical work reproducibly using r (and friends). The

American Statistician, 72, 80–88.
Vuorre, M., & Crump, M. J. C. (2021). Sharing and organizing research products as r packages. Behavior Research Methods,

53, 792–802.

https://doi.org/10.1080/00031305.2017.1375986

https://doi.org/10.3758/s13428-020-01436-x

https://doi.org/10.1080/00031305.2017.1375986
https://doi.org/10.3758/s13428-020-01436-x

