PIMA Indians Diabetes dataset

Riferences:
- Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C. and Johannes, R. S. (1988) Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications in Medical Care (Washington, 1988), ed. R. A. Greenes, pp. 261–265. Los Alamitos, CA: IEEE Computer Society Press.
- Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases http://www.ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of California, Department of Information and Computer Science.

The PIMA Indians dataset studies the predictors associated with the onset of diabetes. The sample includes 532 women from the Pima tribe of Native Americans.

In particular, we are interested in evaluating the effect of npreg on the presence of diabetes (diabetes = pos).

NOTE: Missing data has been removed for convenience of presentation. However, handling missing data (are they random? can I replace them with plausible values without distorting the results?) is a crucial aspect in the analysis of real data and an active area of research.

Observational Studies

In the case of observational studies like this (as opposed to randomized studies), it is essential to analyze the data taking into account possible confounders; it is necessary to include in our model all other variables that may influence the response (presence of diabetes).

It is easy to assume that variables such as glucose, bmi, and pedigree are associated with (and predictors of) diabetes.

Furthermore, variables strongly associated with the number of pregnancies npreg, such as age (the correlation between these two variables is 0.642), risk concealing or magnifying the observed effect. For example, if age is positively associated with the onset of diabetes, an association between the number of pregnancies and diabetes will also be observed. However, this association is spurious because women with a higher number of pregnancies are, on average, also older.

rm(list=ls())
#### some libraries


############

# results reporting
library(gtsummary)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(GGally)
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
library(knitr)
library(gridExtra)
## 
## Caricamento pacchetto: 'gridExtra'
## 
## Il seguente oggetto è mascherato da 'package:dplyr':
## 
##     combine
library(corrplot)
## corrplot 0.95 loaded
# models 
library(MASS)
## 
## Caricamento pacchetto: 'MASS'
## 
## Il seguente oggetto è mascherato da 'package:dplyr':
## 
##     select
## 
## Il seguente oggetto è mascherato da 'package:gtsummary':
## 
##     select

# palettes
options(ggplot2.continuous.colour="viridis")
options(ggplot2.continuous.fill = "viridis")
scale_colour_discrete <- scale_colour_viridis_d
scale_fill_discrete <- scale_fill_viridis_d

opts_chunk$set(echo=FALSE,
               cache=FALSE,
               prompt=FALSE,
               # tidy=TRUE,
               comment=NA,
               message=FALSE,
               warning=FALSE)


######################
#### core functions (to be dropped when the pima package is ready)
library(jointest)
## 
## Caricamento pacchetto: 'jointest'
## 
## Il seguente oggetto è mascherato da 'package:gridExtra':
## 
##     combine
## 
## Il seguente oggetto è mascherato da 'package:dplyr':
## 
##     combine
## 
## Il seguente oggetto è mascherato da 'package:stats':
## 
##     p.adjust
library(flipscores)

library(pima)
data("pimads")
pimads=na.omit(pimads)

Exploratory Data Analysis

     npreg           glucose          pressure           skin      
 Min.   : 0.000   Min.   : 56.00   Min.   : 24.00   Min.   : 7.00  
 1st Qu.: 1.000   1st Qu.: 98.75   1st Qu.: 64.00   1st Qu.:22.00  
 Median : 2.000   Median :115.00   Median : 72.00   Median :29.00  
 Mean   : 3.517   Mean   :121.03   Mean   : 71.51   Mean   :29.18  
 3rd Qu.: 5.000   3rd Qu.:141.25   3rd Qu.: 80.00   3rd Qu.:36.00  
 Max.   :17.000   Max.   :199.00   Max.   :110.00   Max.   :99.00  
      bmi           pedigree           age        diabetes 
 Min.   :18.20   Min.   :0.0850   Min.   :21.00   neg:355  
 1st Qu.:27.88   1st Qu.:0.2587   1st Qu.:23.00   pos:177  
 Median :32.80   Median :0.4160   Median :28.00            
 Mean   :32.89   Mean   :0.5030   Mean   :31.61            
 3rd Qu.:36.90   3rd Qu.:0.6585   3rd Qu.:38.00            
 Max.   :67.10   Max.   :2.4200   Max.   :81.00            
pimads %>% tbl_summary(by = diabetes) %>% add_p() %>%as_gt() %>%   gt::as_raw_html()
Characteristic neg
N = 355
1
pos
N = 177
1
p-value2
npreg 2.0 (1.0, 4.0) 4.0 (1.0, 8.0) <0.001
glucose 106 (93, 124) 144 (118, 171) <0.001
pressure 70 (62, 78) 74 (68, 84) <0.001
skin 27 (19, 33) 32 (27, 39) <0.001
bmi 31 (26, 36) 35 (32, 39) <0.001
pedigree 0.37 (0.24, 0.59) 0.54 (0.33, 0.79) <0.001
age 25 (22, 33) 35 (27, 44) <0.001
1 Median (Q1, Q3)
2 Wilcoxon rank sum test
#
# 
 p1<-ggplot(pimads, aes(x=diabetes, y=npreg, color=diabetes)) +
   geom_boxplot()+theme_bw()
 p2<-ggplot(pimads, aes(x=diabetes, y=glucose, color=diabetes)) +
   geom_boxplot()+theme_bw()

 grid.arrange(p1,p2,ncol=2)


pm <- ggpairs(pimads, columns = c(1:7),aes(color= diabetes),upper = list(continuous = wrap("cor", method = "spearman")))
pm

Very high correlation between skin and bmi (0.68) and between age and npreg (0.64).

Logistic Model

Observational study design:

Let’s consider logistic regression

\[logit(\pi)=log(\pi/(1-\pi))=\beta_0+\beta_1\mbox{npreg}+\beta_2\mbox{glucose}+\beta_3\mbox{pressure}+\beta_4\mbox{skin}+\beta_5\mbox{bmi}+\beta_6\mbox{pedigree}+\beta_7\mbox{age}\] where \(\pi\) is the probability of diabetes, and therefore

(substituting \(\beta_0+\beta_1\mbox{npreg}+\beta_2\mbox{glucose}+\beta_3\mbox{pressure}+\beta_4\mbox{skin}+\beta_5\mbox{bmi}+\beta_6\mbox{pedigree}+\beta_7\mbox{age} = XB\)):

\[\mbox{diabetes} \sim Bernulli(\pi=expit(XB))\] \(expit()\) is the inverse of logit function: \[expit(XB)=\frac{e^{XB}}{1+e^{XB}}\]

MULTIVERSE ANALYSIS

In the analysis of real data, we do not know if (and it is not always plausible to assume that) the relationship of the predictors is linear. It might be appropriate to consider non-linear effects of the variables, such as the quadratic transformation (\(X^2\)) or the square root \(\sqrt{X}\). This could apply to all predictors.

Furthermore, in real data, we might look for observations that are too influential (leverage) or outliers. We could also evaluate different ways of imputing missing data or including interactions between variables, etc.

Let’s try some possible models.


Call:
glm(formula = diabetes ~ ., family = binomial, data = pimads)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -9.554651   0.994217  -9.610  < 2e-16 ***
npreg        0.122517   0.043743   2.801 0.005097 ** 
glucose      0.035321   0.004244   8.322  < 2e-16 ***
pressure    -0.007695   0.010314  -0.746 0.455602    
skin         0.006774   0.014759   0.459 0.646242    
bmi          0.082678   0.023334   3.543 0.000395 ***
pedigree     1.308708   0.364040   3.595 0.000324 ***
age          0.026375   0.014000   1.884 0.059581 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 676.79  on 531  degrees of freedom
Residual deviance: 466.32  on 524  degrees of freedom
AIC: 482.32

Number of Fisher Scoring iterations: 5

Call:
glm(formula = diabetes ~ . - age + sqrt(age), family = binomial, 
    data = pimads)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -10.773675   1.198241  -8.991  < 2e-16 ***
npreg         0.108802   0.044573   2.441 0.014647 *  
glucose       0.035115   0.004246   8.270  < 2e-16 ***
pressure     -0.008995   0.010338  -0.870 0.384237    
skin          0.006263   0.014816   0.423 0.672502    
bmi           0.083496   0.023337   3.578 0.000347 ***
pedigree      1.294344   0.364344   3.553 0.000382 ***
sqrt(age)     0.397604   0.175404   2.267 0.023403 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 676.79  on 531  degrees of freedom
Residual deviance: 464.71  on 524  degrees of freedom
AIC: 480.71

Number of Fisher Scoring iterations: 5

Call:
glm(formula = diabetes ~ . - age + sqrt(age) - npreg + I(npreg^2), 
    family = binomial, data = pimads)

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
(Intercept) -10.640101   1.209553  -8.797  < 2e-16 ***
glucose       0.035166   0.004257   8.261  < 2e-16 ***
pressure     -0.009560   0.010338  -0.925 0.355053    
skin          0.006217   0.014850   0.419 0.675485    
bmi           0.080733   0.023284   3.467 0.000526 ***
pedigree      1.293180   0.365009   3.543 0.000396 ***
sqrt(age)     0.427970   0.166805   2.566 0.010297 *  
I(npreg^2)    0.009252   0.003734   2.478 0.013213 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 676.79  on 531  degrees of freedom
Residual deviance: 464.25  on 524  degrees of freedom
AIC: 480.25

Number of Fisher Scoring iterations: 5

All confounders are continuous. We decide to explore the following transformations for each predictor:



########################################## possible specifications:
combinations_matrix=expand.grid(list(
  c("npreg","sqrt(npreg)","I(npreg^2)"),
  c("age","sqrt(age)","poly(age, 2)"),
  c("glucose","sqrt(glucose)","poly(glucose, 2)"),
  c("pedigree","sqrt(pedigree)","poly(pedigree, 2)"),
  c("bmi","sqrt(bmi)","poly(bmi, 2)")))

combinations=apply(combinations_matrix,1,paste,collapse="+")

Then we estimate all specified models (\(3^5=243\))

#################### one list of formulas for each model:
#######
formulas1=sapply(combinations,function(cmb) paste0("diabetes ~ ",cmb," + pressure + skin"))
mod1=glm(as.formula(formulas1[1]),data=pimads,family=binomial)
summary(mod1)

Call:
glm(formula = as.formula(formulas1[1]), family = binomial, data = pimads)

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -9.554651   0.994217  -9.610  < 2e-16 ***
npreg        0.122517   0.043743   2.801 0.005097 ** 
age          0.026375   0.014000   1.884 0.059581 .  
glucose      0.035321   0.004244   8.322  < 2e-16 ***
pedigree     1.308708   0.364040   3.595 0.000324 ***
bmi          0.082678   0.023334   3.543 0.000395 ***
pressure    -0.007695   0.010314  -0.746 0.455602    
skin         0.006774   0.014759   0.459 0.646242    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 676.79  on 531  degrees of freedom
Residual deviance: 466.32  on 524  degrees of freedom
AIC: 482.32

Number of Fisher Scoring iterations: 5

#stimiamo tutti i modelli:
mods=lapply(formulas1, function(frml) update(mod1,formula. = as.formula(frml)))

Using the function, we apply the PIMA procedure to the list of models within the list mods. And we correct for multiplicity (max-T).

library(pima)
#res=pima(mods,tested_coeffs =  c("npreg","sqrt(npreg)","I(npreg^2)"),n_flips = 2000)

load(file="G:/Il mio Drive/lavorincorso/PIMA/talk_4M/pima_res_maxT.Rdata")

Correlations among coefficients in all model specifications

Some plots

Vulcano Plot

pima:::plot.pima(res,p.values="raw")

pima:::plot.pima(res,p.values="raw",x="Part. Cor",y="z value")

pima:::plot.pima(res,p.values="adjusted",x="Part. Cor",y="z value")


#plot.pima(res,p.values="raw",x="-log10(p)",y="-log10(p.adj.maxT)")


#summary(res) |> filter(p.adj.maxT<.05)

Specification-Curve-like Plot

The Pima Tree

What characteristics do the significant models have?


Classification tree:
rpart(formula = p ~ ., data = comb_wide[, -c(1:2)], method = method)

Variables actually used in tree construction:
[1] age   npreg

Root node error: 54/243 = 0.22222

n= 243 

    CP nsplit rel error xerror    xstd
1 0.50      0         1      1 0.12001
2 0.01      2         0      0 0.00000

, ,  = FALSE

              
               I(npreg^2) npreg sqrt(npreg)
  age                   0    27          27
  poly(age, 2)         27    27          27
  sqrt(age)             0    27          27

, ,  = TRUE

              
               I(npreg^2) npreg sqrt(npreg)
  age                  27     0           0
  poly(age, 2)          0     0           0
  sqrt(age)            27     0           0

The output consists of: - Tspace: table of test statistics (observed in the first row) - summary_table: summary of the results - mods: list of the 243 estimated models (one for each specification) - info: information about the specifications (auxiliary object)

Choose Your Model

Now we can consider the models whose p-values are still significant after correction.

We can take the one with the highest significance (minimum p-value) or the one that seems reasonable to us:

sel_model<-which(res$summary_table$p.adj<0.05)
sel_model
 [1]   3   6  12  15  21  24  30  33  39  42  48  51  57  60  66  69  75  78  84
[20]  87  93  96 102 105 111 114 120 123 129 132 138 141 147 150 156 159 165 168
[39] 174 177 183 186 192 195 201 204 210 213 219 222 228 231 237 240
tab=res$summary_table
tab$.assign=NULL
tab[sel_model,]
                                                                   Model
3                                    I(npreg^2)+age+glucose+pedigree+bmi
6                              I(npreg^2)+sqrt(age)+glucose+pedigree+bmi
12                             I(npreg^2)+age+sqrt(glucose)+pedigree+bmi
15                       I(npreg^2)+sqrt(age)+sqrt(glucose)+pedigree+bmi
21                          I(npreg^2)+age+poly(glucose, 2)+pedigree+bmi
24                    I(npreg^2)+sqrt(age)+poly(glucose, 2)+pedigree+bmi
30                             I(npreg^2)+age+glucose+sqrt(pedigree)+bmi
33                       I(npreg^2)+sqrt(age)+glucose+sqrt(pedigree)+bmi
39                       I(npreg^2)+age+sqrt(glucose)+sqrt(pedigree)+bmi
42                 I(npreg^2)+sqrt(age)+sqrt(glucose)+sqrt(pedigree)+bmi
48                    I(npreg^2)+age+poly(glucose, 2)+sqrt(pedigree)+bmi
51              I(npreg^2)+sqrt(age)+poly(glucose, 2)+sqrt(pedigree)+bmi
57                          I(npreg^2)+age+glucose+poly(pedigree, 2)+bmi
60                    I(npreg^2)+sqrt(age)+glucose+poly(pedigree, 2)+bmi
66                    I(npreg^2)+age+sqrt(glucose)+poly(pedigree, 2)+bmi
69              I(npreg^2)+sqrt(age)+sqrt(glucose)+poly(pedigree, 2)+bmi
75                 I(npreg^2)+age+poly(glucose, 2)+poly(pedigree, 2)+bmi
78           I(npreg^2)+sqrt(age)+poly(glucose, 2)+poly(pedigree, 2)+bmi
84                             I(npreg^2)+age+glucose+pedigree+sqrt(bmi)
87                       I(npreg^2)+sqrt(age)+glucose+pedigree+sqrt(bmi)
93                       I(npreg^2)+age+sqrt(glucose)+pedigree+sqrt(bmi)
96                 I(npreg^2)+sqrt(age)+sqrt(glucose)+pedigree+sqrt(bmi)
102                   I(npreg^2)+age+poly(glucose, 2)+pedigree+sqrt(bmi)
105             I(npreg^2)+sqrt(age)+poly(glucose, 2)+pedigree+sqrt(bmi)
111                      I(npreg^2)+age+glucose+sqrt(pedigree)+sqrt(bmi)
114                I(npreg^2)+sqrt(age)+glucose+sqrt(pedigree)+sqrt(bmi)
120                I(npreg^2)+age+sqrt(glucose)+sqrt(pedigree)+sqrt(bmi)
123          I(npreg^2)+sqrt(age)+sqrt(glucose)+sqrt(pedigree)+sqrt(bmi)
129             I(npreg^2)+age+poly(glucose, 2)+sqrt(pedigree)+sqrt(bmi)
132       I(npreg^2)+sqrt(age)+poly(glucose, 2)+sqrt(pedigree)+sqrt(bmi)
138                   I(npreg^2)+age+glucose+poly(pedigree, 2)+sqrt(bmi)
141             I(npreg^2)+sqrt(age)+glucose+poly(pedigree, 2)+sqrt(bmi)
147             I(npreg^2)+age+sqrt(glucose)+poly(pedigree, 2)+sqrt(bmi)
150       I(npreg^2)+sqrt(age)+sqrt(glucose)+poly(pedigree, 2)+sqrt(bmi)
156          I(npreg^2)+age+poly(glucose, 2)+poly(pedigree, 2)+sqrt(bmi)
159    I(npreg^2)+sqrt(age)+poly(glucose, 2)+poly(pedigree, 2)+sqrt(bmi)
165                         I(npreg^2)+age+glucose+pedigree+poly(bmi, 2)
168                   I(npreg^2)+sqrt(age)+glucose+pedigree+poly(bmi, 2)
174                   I(npreg^2)+age+sqrt(glucose)+pedigree+poly(bmi, 2)
177             I(npreg^2)+sqrt(age)+sqrt(glucose)+pedigree+poly(bmi, 2)
183                I(npreg^2)+age+poly(glucose, 2)+pedigree+poly(bmi, 2)
186          I(npreg^2)+sqrt(age)+poly(glucose, 2)+pedigree+poly(bmi, 2)
192                   I(npreg^2)+age+glucose+sqrt(pedigree)+poly(bmi, 2)
195             I(npreg^2)+sqrt(age)+glucose+sqrt(pedigree)+poly(bmi, 2)
201             I(npreg^2)+age+sqrt(glucose)+sqrt(pedigree)+poly(bmi, 2)
204       I(npreg^2)+sqrt(age)+sqrt(glucose)+sqrt(pedigree)+poly(bmi, 2)
210          I(npreg^2)+age+poly(glucose, 2)+sqrt(pedigree)+poly(bmi, 2)
213    I(npreg^2)+sqrt(age)+poly(glucose, 2)+sqrt(pedigree)+poly(bmi, 2)
219                I(npreg^2)+age+glucose+poly(pedigree, 2)+poly(bmi, 2)
222          I(npreg^2)+sqrt(age)+glucose+poly(pedigree, 2)+poly(bmi, 2)
228          I(npreg^2)+age+sqrt(glucose)+poly(pedigree, 2)+poly(bmi, 2)
231    I(npreg^2)+sqrt(age)+sqrt(glucose)+poly(pedigree, 2)+poly(bmi, 2)
237       I(npreg^2)+age+poly(glucose, 2)+poly(pedigree, 2)+poly(bmi, 2)
240 I(npreg^2)+sqrt(age)+poly(glucose, 2)+poly(pedigree, 2)+poly(bmi, 2)
         Coeff    Estimate    Score Std. Error  z value Part. Cor      p
3   I(npreg^2) 0.010284342 828.5898   294.4546 2.813981 0.1173409 0.0175
6   I(npreg^2) 0.009252495 729.6656   290.7851 2.509295 0.1046225 0.0305
12  I(npreg^2) 0.010248933 824.7275   294.4931 2.800498 0.1179712 0.0180
15  I(npreg^2) 0.009213771 725.6008   290.7617 2.495517 0.1051133 0.0315
21  I(npreg^2) 0.010284776 827.9660   294.2826 2.813506 0.1175084 0.0165
24  I(npreg^2) 0.009250739 728.7465   290.5778 2.507922 0.1048007 0.0315
30  I(npreg^2) 0.010365127 835.4487   293.8498 2.843115 0.1216682 0.0165
33  I(npreg^2) 0.009332483 736.3471   290.2739 2.536732 0.1085070 0.0290
39  I(npreg^2) 0.010328069 831.7298   293.9332 2.829656 0.1217861 0.0175
42  I(npreg^2) 0.009292547 732.4328   290.2992 2.523027 0.1085513 0.0300
48  I(npreg^2) 0.010365750 834.8552   293.6922 2.842620 0.1217585 0.0155
51  I(npreg^2) 0.009330844 735.4701   290.0854 2.535357 0.1085903 0.0295
57  I(npreg^2) 0.010321326 823.3681   291.5734 2.823880 0.1234264 0.0185
60  I(npreg^2) 0.009274219 724.2757   288.0526 2.514387 0.1098667 0.0305
66  I(npreg^2) 0.010290705 820.3633   291.7100 2.812256 0.1228721 0.0190
69  I(npreg^2) 0.009241731 721.1389   288.1354 2.502778 0.1093244 0.0315
75  I(npreg^2) 0.010324120 823.3493   291.4813 2.824707 0.1234626 0.0190
78  I(npreg^2) 0.009275896 724.0823   287.9471 2.514637 0.1098785 0.0310
84  I(npreg^2) 0.010309294 828.3333   294.1457 2.816065 0.1172593 0.0165
87  I(npreg^2) 0.009283474 729.9674   290.4487 2.513240 0.1046184 0.0300
93  I(npreg^2) 0.010275401 824.5302   294.1700 2.802904 0.1179327 0.0175
96  I(npreg^2) 0.009246288 725.9726   290.4117 2.499805 0.1051517 0.0315
102 I(npreg^2) 0.010307889 827.4362   293.9614 2.814778 0.1174791 0.0165
105 I(npreg^2) 0.009279555 728.7614   290.2263 2.511010 0.1048402 0.0310
111 I(npreg^2) 0.010388528 835.0963   293.5778 2.844548 0.1216394 0.0160
114 I(npreg^2) 0.009361567 736.5210   289.9714 2.539978 0.1085499 0.0290
120 I(npreg^2) 0.010353128 831.4352   293.6470 2.831411 0.1217942 0.0170
123 I(npreg^2) 0.009323273 732.6742   289.9829 2.526612 0.1086302 0.0300
129 I(npreg^2) 0.010387265 834.2444   293.4109 2.843263 0.1217473 0.0160
132 I(npreg^2) 0.009357752 735.3721   289.7710 2.537770 0.1086454 0.0290
138 I(npreg^2) 0.010346630 823.0843   291.3202 2.825360 0.1234557 0.0180
141 I(npreg^2) 0.009305583 724.5436   287.7658 2.517824 0.1099757 0.0305
147 I(npreg^2) 0.010317834 820.1426   291.4421 2.814084 0.1229349 0.0185
150 I(npreg^2) 0.009274886 721.4778   287.8339 2.506577 0.1094650 0.0310
156 I(npreg^2) 0.010348044 822.8654   291.2228 2.825553 0.1234661 0.0185
159 I(npreg^2) 0.009305681 724.1410   287.6523 2.517418 0.1099607 0.0310
165 I(npreg^2) 0.010279345 822.7593   293.6784 2.801565 0.1166379 0.0175
168 I(npreg^2) 0.009276460 726.5084   289.9579 2.505565 0.1042594 0.0295
174 I(npreg^2) 0.010248252 819.0198   293.6715 2.788897 0.1174101 0.0175
177 I(npreg^2) 0.009242613 722.6303   289.8895 2.492778 0.1048876 0.0310
183 I(npreg^2) 0.010274053 821.2777   293.4631 2.798572 0.1169836 0.0180
186 I(npreg^2) 0.009268397 724.7475   289.7025 2.501696 0.1045823 0.0315
192 I(npreg^2) 0.010355187 829.1480   293.1406 2.828500 0.1212268 0.0160
195 I(npreg^2) 0.009350588 732.6746   289.5062 2.530773 0.1083625 0.0285
201 I(npreg^2) 0.010322690 825.5339   293.1785 2.815806 0.1214546 0.0160
204 I(npreg^2) 0.009315640 728.9247   289.4858 2.517998 0.1085150 0.0300
210 I(npreg^2) 0.010350003 827.7414   292.9483 2.825555 0.1213809 0.0160
213 I(npreg^2) 0.009342635 730.9966   289.2781 2.526969 0.1084919 0.0295
219 I(npreg^2) 0.010316067 817.4943   290.9421 2.809818 0.1232769 0.0180
222 I(npreg^2) 0.009296274 720.9765   287.3627 2.508943 0.1099872 0.0305
228 I(npreg^2) 0.010289668 814.5561   291.0345 2.798830 0.1227980 0.0180
231 I(npreg^2) 0.009268392 717.9611   287.3999 2.498126 0.1095199 0.0315
237 I(npreg^2) 0.010315002 816.8861   290.8276 2.808833 0.1232429 0.0190
240 I(npreg^2) 0.009293729 720.2039   287.2299 2.507413 0.1099299 0.0300
    p.adj.maxT
3        0.020
6        0.035
12       0.021
15       0.036
21       0.020
24       0.035
30       0.019
33       0.034
39       0.020
42       0.035
48       0.020
51       0.035
57       0.021
60       0.037
66       0.021
69       0.037
75       0.021
78       0.037
84       0.020
87       0.035
93       0.021
96       0.036
102      0.020
105      0.035
111      0.019
114      0.034
120      0.020
123      0.035
129      0.020
132      0.035
138      0.021
141      0.037
147      0.021
150      0.037
156      0.021
159      0.037
165      0.021
168      0.036
174      0.021
177      0.037
183      0.021
186      0.037
192      0.020
195      0.035
201      0.021
204      0.035
210      0.020
213      0.035
219      0.021
222      0.037
228      0.021
231      0.037
237      0.021
240      0.037

Here is the translation of the provided markdown text:

Problematic Aspects

Of course, all these conclusions hold as long as the assumptions we make about the models we estimate are valid. It is appropriate to make adequacy assessments of the estimated models (e.g., diagnostic plots, fit indices).