Generate a random variance-covariance matrix sampling the correlation values from a uniform distribution. The function does not guarantee that the matrix is positive definite. The variance is fixed to 1 for simulating standardized data.
Arguments
- p
number of variables/indicators
- rmin
minimum correlation
- rmax
maximum correlation. Default to
NULL
. IfNULL
the minimum is used thus using a single value.
Examples
gen_sigma(3, 0.5) # compound symmetry
#> [,1] [,2] [,3]
#> [1,] 1.0 0.5 0.5
#> [2,] 0.5 1.0 0.5
#> [3,] 0.5 0.5 1.0
gen_sigma(5, 0.5, 0.7)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.0000000 0.5161500 0.6668666 0.5314417 0.5995555
#> [2,] 0.5161500 1.0000000 0.6201522 0.5014799 0.5579534
#> [3,] 0.6668666 0.5014799 1.0000000 0.5932787 0.6465764
#> [4,] 0.6201522 0.5932787 0.5579534 1.0000000 0.6545043
#> [5,] 0.5314417 0.5995555 0.6465764 0.6545043 1.0000000