Skip to contents

Compute all relevant summary statistics given a dataframes of all numerical columns.

Usage

get_summary_stats(data)

Arguments

data

a dataframe

Value

a dataframe

Examples

X <- sim_clust(2, 100, dmin = 0.5, rmin = 0.3, nind = 10)
get_summary_stats(X)
#>                  x1         x2           x3         x4         x5          x6
#> mean      0.2064431 -0.2648846 -0.195638565 -0.1345382 -0.2961773  0.26512010
#> sd        1.0873796  1.0673600  1.289761631  0.9107464  0.9635989  0.96499959
#> min      -3.2445918 -3.9307422 -3.698190812 -2.1867473 -3.3986842 -2.71655257
#> max       2.2964653  2.5668284  2.749312095  2.6537489  1.9231585  2.25717744
#> skewness -0.2151013 -0.5020920  0.005369934  0.4050474 -0.3556456 -0.28807484
#> kurtosi  -0.1239653  0.8122760 -0.273521306  0.3440463  0.1402111 -0.02211097
#> q25      -0.5077184 -0.8969083 -1.069782053 -0.6592801 -0.9289476 -0.42111608
#> q50       0.2535726 -0.2103734 -0.167497948 -0.2222320 -0.1813497  0.26647469
#> q75       0.9224631  0.4811286  0.568324956  0.5508523  0.3654583  0.96505774
#>                  x7          x8         x9         x10      group
#> mean     -0.1763534 -0.35850508  0.3109732  0.23773994  1.5000000
#> sd        0.9754852  1.01972269  1.0727607  0.99254707  0.5025189
#> min      -2.8047904 -3.27910511 -1.9169994 -2.41555453  1.0000000
#> max       1.8736472  2.22911563  3.2989544  2.76796033  2.0000000
#> skewness -0.2179225 -0.10579246  0.3463374  0.04282651  0.0000000
#> kurtosi  -0.3564780 -0.02269649 -0.1528765  0.44887898 -2.0199000
#> q25      -0.8780804 -0.97209425 -0.5007841 -0.27164295  1.0000000
#> q50      -0.1174649 -0.37675884  0.3041808  0.20579093  1.5000000
#> q75       0.5634481  0.38023638  0.9843386  0.79030246  2.0000000