Skip to contents

The function takes a dataframe and return a list of properties used in the simulation, the udata object. In particular, it returns the number of observation, number of indicators, summary statistics, the variance-covariance and correlation matrices.

Usage

prep_user_data(data)

Arguments

data

a dataframe

Value

a list

Examples

X <- sapply(1:10, function(x) rnorm(100, 0, 1))
X <- data.frame(X)
prep_user_data(X)
#> $n
#> [1] 100
#> 
#> $nind
#> [1] 10
#> 
#> $mus
#>            X1            X2            X3            X4            X5 
#>  0.0007194623  0.1760387850  0.0276419078  0.0407132160  0.1792736251 
#>            X6            X7            X8            X9           X10 
#> -0.1199451775  0.1331642868  0.0245542432  0.0110181664 -0.0434920910 
#> 
#> $Sigma
#>              x1          x2          x3            x4            x5          x6
#> x1   0.85078055  0.01700508  0.05367002  0.0183178989 -0.0733980479  0.04731664
#> x2   0.01700508  1.00424023 -0.04838458  0.1966063358 -0.1102797798 -0.03466176
#> x3   0.05367002 -0.04838458  0.77018757  0.1043636687 -0.0918439135  0.02542770
#> x4   0.01831790  0.19660634  0.10436367  0.9992590370 -0.0001459561 -0.12866890
#> x5  -0.07339805 -0.11027978 -0.09184391 -0.0001459561  1.0488966231 -0.03008883
#> x6   0.04731664 -0.03466176  0.02542770 -0.1286688954 -0.0300888347  0.81837640
#> x7  -0.10812263 -0.06055269  0.15799477 -0.1679124820 -0.0770620679  0.09439744
#> x8  -0.04934185 -0.04014910 -0.05412454 -0.0966556452  0.1722561686 -0.09221045
#> x9   0.11561172 -0.05444066  0.05164865  0.1770747374 -0.0093950475 -0.02997412
#> x10  0.05488572 -0.11279033  0.03510993 -0.1160407540  0.1198198567  0.01880366
#>               x7           x8           x9         x10
#> x1  -0.108122629 -0.049341849  0.115611717  0.05488572
#> x2  -0.060552692 -0.040149100 -0.054440657 -0.11279033
#> x3   0.157994770 -0.054124535  0.051648646  0.03510993
#> x4  -0.167912482 -0.096655645  0.177074737 -0.11604075
#> x5  -0.077062068  0.172256169 -0.009395048  0.11981986
#> x6   0.094397444 -0.092210449 -0.029974119  0.01880366
#> x7   1.125430945  0.000584968 -0.066980606  0.15171890
#> x8   0.000584968  1.071810243  0.048987143 -0.14698464
#> x9  -0.066980606  0.048987143  0.773524823  0.03560746
#> x10  0.151718904 -0.146984643  0.035607463  0.84796492
#> 
#> $CorT
#>              X1          X2          X3            X4            X5          X6
#> X1   1.00000000  0.01839717  0.06630171  0.0198667963 -0.0776979196  0.05670594
#> X2   0.01839717  1.00000000 -0.05501611  0.1962635538 -0.1074510685 -0.03823449
#> X3   0.06630171 -0.05501611  1.00000000  0.1189630370 -0.1021846789  0.03202819
#> X4   0.01986680  0.19626355  0.11896304  1.0000000000 -0.0001425663 -0.14228463
#> X5  -0.07769792 -0.10745107 -0.10218468 -0.0001425663  1.0000000000 -0.03247600
#> X6   0.05670594 -0.03823449  0.03202819 -0.1422846275 -0.0324759957  1.00000000
#> X7  -0.11049647 -0.05695806  0.16970125 -0.1583377658 -0.0709275386  0.09836130
#> X8  -0.05167110 -0.03869885 -0.05957129 -0.0933962052  0.1624611369 -0.09845656
#> X9   0.14251348 -0.06176855  0.06691501  0.2014097250 -0.0104302690 -0.03767322
#> X10  0.06461922 -0.12222614  0.04344530 -0.1260615250  0.1270496604  0.02257236
#>                X7            X8          X9         X10
#> X1  -0.1104964676 -0.0516710981  0.14251348  0.06461922
#> X2  -0.0569580645 -0.0386988496 -0.06176855 -0.12222614
#> X3   0.1697012467 -0.0595712863  0.06691501  0.04344530
#> X4  -0.1583377658 -0.0933962052  0.20140973 -0.12606152
#> X5  -0.0709275386  0.1624611369 -0.01043027  0.12704966
#> X6   0.0983613000 -0.0984565552 -0.03767322  0.02257236
#> X7   1.0000000000  0.0005326154 -0.07178811  0.15530711
#> X8   0.0005326154  1.0000000000  0.05380047 -0.15417859
#> X9  -0.0717881096  0.0538004657  1.00000000  0.04396580
#> X10  0.1553071057 -0.1541785893  0.04396580  1.00000000
#> 
#> $skews
#>           X1           X2           X3           X4           X5           X6 
#>  0.102796550 -0.269388628  0.005752362 -0.138355861 -0.054516349 -0.187544229 
#>           X7           X8           X9          X10 
#>  0.480068450  0.081815609 -0.227337721  0.139531268 
#> 
#> $kurts
#>         X1         X2         X3         X4         X5         X6         X7 
#> -0.8593140  0.2987780  0.3562910 -0.5447436  0.5314772 -0.1993614  0.8963688 
#>         X8         X9        X10 
#>  0.1402821 -0.3064767 -0.5267732 
#> 
#> $sums
#>                     X1         X2           X3          X4          X5
#> mean      0.0007194623  0.1760388  0.027641908  0.04071322  0.17927363
#> sd        0.9223776599  1.0021179  0.877603310  0.99962945  1.02415654
#> min      -2.0195239184 -2.8453973 -2.355188157 -2.39203040 -3.00634288
#> max       2.0311096095  2.5271353  2.497815829  2.20157467  2.80806792
#> skewness  0.1027965496 -0.2693886  0.005752362 -0.13835586 -0.05451635
#> kurtosi  -0.8593139514  0.2987780  0.356290954 -0.54474362  0.53147719
#> q25      -0.7343807651 -0.4376771 -0.479167256 -0.59228237 -0.47112292
#> q50      -0.0738863791  0.2177306  0.002956574 -0.07557945  0.21959921
#> q75       0.7211268935  0.8848719  0.614712767  0.84765694  0.85751630
#>                  X6           X7          X8          X9         X10
#> mean     -0.1199452  0.133164287  0.02455424  0.01101817 -0.04349209
#> sd        0.9046416  1.060863302  1.03528269  0.87950260  0.92085011
#> min      -2.6062579 -2.571208205 -2.35798672 -2.43180339 -2.26104152
#> max       1.8373034  3.657614480  3.23609247  1.89725951  2.01038331
#> skewness -0.1875442  0.480068450  0.08181561 -0.22733772  0.13953127
#> kurtosi  -0.1993614  0.896368818  0.14028206 -0.30647671 -0.52677323
#> q25      -0.6953008 -0.534474559 -0.56926268 -0.62633760 -0.68996328
#> q50      -0.1165373  0.002629423 -0.04860518  0.01377129 -0.08662332
#> q75       0.4867439  0.800946330  0.67815181  0.68900215  0.62387485
#> 
#> $sumNA
#>  [1] "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)"
#>  [6] "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)"
#>