Summarize a dataframe extracting relevant statistics for the simulation
Source:R/utils.R
prep_user_data.Rd
The function takes a dataframe and return a list of properties used in the simulation, the udata
object. In particular, it returns the number of observation, number of indicators,
summary statistics, the variance-covariance and correlation matrices.
Examples
X <- sapply(1:10, function(x) rnorm(100, 0, 1))
X <- data.frame(X)
prep_user_data(X)
#> $n
#> [1] 100
#>
#> $nind
#> [1] 10
#>
#> $mus
#> X1 X2 X3 X4 X5
#> 0.0007194623 0.1760387850 0.0276419078 0.0407132160 0.1792736251
#> X6 X7 X8 X9 X10
#> -0.1199451775 0.1331642868 0.0245542432 0.0110181664 -0.0434920910
#>
#> $Sigma
#> x1 x2 x3 x4 x5 x6
#> x1 0.85078055 0.01700508 0.05367002 0.0183178989 -0.0733980479 0.04731664
#> x2 0.01700508 1.00424023 -0.04838458 0.1966063358 -0.1102797798 -0.03466176
#> x3 0.05367002 -0.04838458 0.77018757 0.1043636687 -0.0918439135 0.02542770
#> x4 0.01831790 0.19660634 0.10436367 0.9992590370 -0.0001459561 -0.12866890
#> x5 -0.07339805 -0.11027978 -0.09184391 -0.0001459561 1.0488966231 -0.03008883
#> x6 0.04731664 -0.03466176 0.02542770 -0.1286688954 -0.0300888347 0.81837640
#> x7 -0.10812263 -0.06055269 0.15799477 -0.1679124820 -0.0770620679 0.09439744
#> x8 -0.04934185 -0.04014910 -0.05412454 -0.0966556452 0.1722561686 -0.09221045
#> x9 0.11561172 -0.05444066 0.05164865 0.1770747374 -0.0093950475 -0.02997412
#> x10 0.05488572 -0.11279033 0.03510993 -0.1160407540 0.1198198567 0.01880366
#> x7 x8 x9 x10
#> x1 -0.108122629 -0.049341849 0.115611717 0.05488572
#> x2 -0.060552692 -0.040149100 -0.054440657 -0.11279033
#> x3 0.157994770 -0.054124535 0.051648646 0.03510993
#> x4 -0.167912482 -0.096655645 0.177074737 -0.11604075
#> x5 -0.077062068 0.172256169 -0.009395048 0.11981986
#> x6 0.094397444 -0.092210449 -0.029974119 0.01880366
#> x7 1.125430945 0.000584968 -0.066980606 0.15171890
#> x8 0.000584968 1.071810243 0.048987143 -0.14698464
#> x9 -0.066980606 0.048987143 0.773524823 0.03560746
#> x10 0.151718904 -0.146984643 0.035607463 0.84796492
#>
#> $CorT
#> X1 X2 X3 X4 X5 X6
#> X1 1.00000000 0.01839717 0.06630171 0.0198667963 -0.0776979196 0.05670594
#> X2 0.01839717 1.00000000 -0.05501611 0.1962635538 -0.1074510685 -0.03823449
#> X3 0.06630171 -0.05501611 1.00000000 0.1189630370 -0.1021846789 0.03202819
#> X4 0.01986680 0.19626355 0.11896304 1.0000000000 -0.0001425663 -0.14228463
#> X5 -0.07769792 -0.10745107 -0.10218468 -0.0001425663 1.0000000000 -0.03247600
#> X6 0.05670594 -0.03823449 0.03202819 -0.1422846275 -0.0324759957 1.00000000
#> X7 -0.11049647 -0.05695806 0.16970125 -0.1583377658 -0.0709275386 0.09836130
#> X8 -0.05167110 -0.03869885 -0.05957129 -0.0933962052 0.1624611369 -0.09845656
#> X9 0.14251348 -0.06176855 0.06691501 0.2014097250 -0.0104302690 -0.03767322
#> X10 0.06461922 -0.12222614 0.04344530 -0.1260615250 0.1270496604 0.02257236
#> X7 X8 X9 X10
#> X1 -0.1104964676 -0.0516710981 0.14251348 0.06461922
#> X2 -0.0569580645 -0.0386988496 -0.06176855 -0.12222614
#> X3 0.1697012467 -0.0595712863 0.06691501 0.04344530
#> X4 -0.1583377658 -0.0933962052 0.20140973 -0.12606152
#> X5 -0.0709275386 0.1624611369 -0.01043027 0.12704966
#> X6 0.0983613000 -0.0984565552 -0.03767322 0.02257236
#> X7 1.0000000000 0.0005326154 -0.07178811 0.15530711
#> X8 0.0005326154 1.0000000000 0.05380047 -0.15417859
#> X9 -0.0717881096 0.0538004657 1.00000000 0.04396580
#> X10 0.1553071057 -0.1541785893 0.04396580 1.00000000
#>
#> $skews
#> X1 X2 X3 X4 X5 X6
#> 0.102796550 -0.269388628 0.005752362 -0.138355861 -0.054516349 -0.187544229
#> X7 X8 X9 X10
#> 0.480068450 0.081815609 -0.227337721 0.139531268
#>
#> $kurts
#> X1 X2 X3 X4 X5 X6 X7
#> -0.8593140 0.2987780 0.3562910 -0.5447436 0.5314772 -0.1993614 0.8963688
#> X8 X9 X10
#> 0.1402821 -0.3064767 -0.5267732
#>
#> $sums
#> X1 X2 X3 X4 X5
#> mean 0.0007194623 0.1760388 0.027641908 0.04071322 0.17927363
#> sd 0.9223776599 1.0021179 0.877603310 0.99962945 1.02415654
#> min -2.0195239184 -2.8453973 -2.355188157 -2.39203040 -3.00634288
#> max 2.0311096095 2.5271353 2.497815829 2.20157467 2.80806792
#> skewness 0.1027965496 -0.2693886 0.005752362 -0.13835586 -0.05451635
#> kurtosi -0.8593139514 0.2987780 0.356290954 -0.54474362 0.53147719
#> q25 -0.7343807651 -0.4376771 -0.479167256 -0.59228237 -0.47112292
#> q50 -0.0738863791 0.2177306 0.002956574 -0.07557945 0.21959921
#> q75 0.7211268935 0.8848719 0.614712767 0.84765694 0.85751630
#> X6 X7 X8 X9 X10
#> mean -0.1199452 0.133164287 0.02455424 0.01101817 -0.04349209
#> sd 0.9046416 1.060863302 1.03528269 0.87950260 0.92085011
#> min -2.6062579 -2.571208205 -2.35798672 -2.43180339 -2.26104152
#> max 1.8373034 3.657614480 3.23609247 1.89725951 2.01038331
#> skewness -0.1875442 0.480068450 0.08181561 -0.22733772 0.13953127
#> kurtosi -0.1993614 0.896368818 0.14028206 -0.30647671 -0.52677323
#> q25 -0.6953008 -0.534474559 -0.56926268 -0.62633760 -0.68996328
#> q50 -0.1165373 0.002629423 -0.04860518 0.01377129 -0.08662332
#> q75 0.4867439 0.800946330 0.67815181 0.68900215 0.62387485
#>
#> $sumNA
#> [1] "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)"
#> [6] "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)" "0 (0.00 %)"
#>