
A space travel into the Multiverse
Cognitive Science Arena

Giulia Calignano Filippo Gambarota

Department of Developmental Psychology and Socialization, University of Padova

2025-05-02

Exploratory Multiverse Analysis
(EMA)

An example, Statistics and Math Anxiety

McCaughey et al. (2022) explored the relationship between
self-efficacy anxiety sensitivity and perfectionism would be related
to math/statistics anxiety controlling for gender, university
program, and education level.

We used the dataset available at https://osf.io/nzhq6.

We are going to do crazy stuff with this dataset that are not
related to the original paper and research question! :)

https://osf.io/nzhq6/?view_only=

The big picture

Multiverse
Analysis

Importing the full
dataset

Exploratory Data
Analysis

Identify the
crucial steps

pre-processing
ouliers managing
possible model/s

missing data
...

Define the plausible
multiverse scenarios

Use an R package (e.g.,
multiverse)

Manually create the different
models

Use a set of custom function

Create a data
structure with all
the fitted models

Exploratory
Multiverse Analysis

Inferential
Multiverse Analysis

Reporting

Importing

We did a little bit of pre-processing. The ms_anxiety.rds file
contains the cleaned version of the original dataset.
dat <- readRDS(here("data/ms_anxiety.rds"))
vars <- names(dat)
ys <- vars[grepl("^stat.anx|^math", vars)]
ys
[1] "stat.anx.tc" "stat.anx.i" "stat.anx.ah" "stat.anx.ws"
[5] "stat.anx.fst" "stat.anx.sc" "math.anx" "stat.anx.TOT"
[9] "stat.anx.ANX" "stat.anx.FEEL"

xs <- vars[!vars %in% ys]
xs
[1] "self.efficacy" "asi" "frost.com"
[4] "frost.da" "faculty" "program.type"
[7] "gender.category"

Exploring

Let’s see the type of variables of the dataset:
sapply(dat[ys], class)
stat.anx.tc stat.anx.i stat.anx.ah stat.anx.ws stat.anx.fst
"numeric" "numeric" "numeric" "numeric" "numeric"
stat.anx.sc math.anx stat.anx.TOT stat.anx.ANX stat.anx.FEEL
"numeric" "numeric" "numeric" "numeric" "numeric"
sapply(dat[xs], class)
self.efficacy asi frost.com frost.da
"numeric" "numeric" "numeric" "numeric"
faculty program.type gender.category
"factor" "factor" "factor"

Main research questions

The main idea of the authors is predicting math and statistics
anxiety with self-efficacy and perfectionism. In particular they
pre-registered (see https://osf.io/b3g7s):

1. self-efficacy will be negatively related to math/statistics
anxiety

2. anxiety sensitivity will be positively related to math/statistics
anxiety.

3. self-critical perfectionism will be positively related to
math/statistics anxiety.

4. the relationships described above will remain when statistically
adjusting for gender, university program (arts vs. science) and
student status (undergraduate vs. graduate).

https://osf.io/b3g7s

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

self.efficacy

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

frost.com

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

frost.da

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

asi

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

f m f m f m

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

gender.category

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

arts science other arts science other arts science other

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

faculty

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

stat.anx.tc stat.anx.TOT stat.anx.ws

stat.anx.fst stat.anx.i stat.anx.sc

stat.anx.ah stat.anx.ANX stat.anx.FEEL

graduate undergraduate graduate undergraduate graduate undergraduate

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

program.type

S
ta

tis
tic

s
A

nx
ie

ty

Exploring the relationships

frost.da self.efficacy

asi frost.com

1 2 3 4 5 1 2 3 4 5

1

2

3

4

5

1

2

3

4

5m
at

h.
an

x

Exploring the relationships

faculty gender.category program.type

arts science other f m graduate undergraduate

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

m
at

h.
an

x

Selecting a sub-sample

For the purpose of the example, we select a subsample of the
dataset to increase the variability and simulate a more uncertain
scenario with a lower sample size.
set.seed(9386)
N <- 200
selected <- sample(1:nrow(dat), size = N, replace = FALSE)
dat <- dat[selected,]

Data structure for specifications

When conducting a multiverse in R (or in whatever language) the
data structure is very important.

▶ how to create and organize the different models?
▶ how to easily extract all the informations such as coefficients,

standard errors, p-values, etc.
▶ …

An R list is probably the best

A (named) list is flexible, easy to index and can be accesed by
other functions to extract information and create other list.

A list in R can be easily transformed into a data.frame for
other models, plots, tables, etc.

You can use the *apply family (sapply, lapply, etc.) to
compute complex operations on lists.

An R list is probably the best

For example, assuming that I have some regression models within a
named list:
fit1 <- lm(math.anx ~ gender.category + asi, data = dat)
fit2 <- lm(math.anx ~ gender.category + asi + faculty, data = dat)
fit3 <- lm(math.anx ~ gender.category + faculty, data = dat)
fit4 <- lm(math.anx ~ gender.category + asi + program.type, data = dat)

... and other thousands of (plausible) models :)

mods <- list(fit1, fit2, fit3, fit4)
names(mods) <- paste0("mod", 1:length(mods))

An R list is probably the best

Then, I want to extract all the asi coefficients and put into a
data.frame:
get_coef <- function(x, coef = NULL){

x <- broom::tidy(x, conf.int = TRUE)
if(!is.null(coef)){

filter(x, term %in% coef)
} else{

x
}

}

get_coef(mods$mod1, "asi")

A tibble: 1 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 asi 0.383 0.0748 5.11 0.000000745 0.235 0.530

An R list is probably the best

With lapply (or purrr::map()) and combining the results, you
can easily create a nice dataframe with your coefficients:
lapply(mods, get_coef, "asi") |>

dplyr::bind_rows(.id = "mod")

A tibble: 3 x 8
mod term estimate std.error statistic p.value conf.low conf.high
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 mod1 asi 0.383 0.0748 5.11 7.45e-7 0.235 0.530
2 mod2 asi 0.386 0.0741 5.21 4.88e-7 0.240 0.532
3 mod4 asi 0.410 0.0728 5.64 5.89e-8 0.267 0.554

Creating the specifications

There are multiple ways of creating the specifications in practice.
You can do it from scratch:
mod1 <- lm(y ~ x1 + x2)
mod2 <- lm(y ~ log(x1) + log(x2))
mod3 <- lm(y ~ x1 + x2) # removing outliers

mods <- list(mod1 = mod1, mod2 = mod2, mod3 = mod3)
...

Creating the specifications

The multiverse R Package and the related paper (Götz et al.,
2024) provides a very flexible and complex syntax to define
different specifications.

https://cran.r-project.org/web/packages/multiverse/readme/README.html

Creating the specifications

For this example we can use some custom functions, in particular
the create_multi() function. There are no wrong solutions if the
results is correct.
devtools::load_all()

slog <- function(x) {
if(any(x == 0)){

x <- x + 1
}
log(x)

}

multi <- create_multi(
math.anx ~ asi + faculty + stat.anx.TOT, # full model formula
focal = "asi", # focal predictor, never removed
nfuns = c("slog"), # functions for the numeric variables
data = dat

)

Creating the specifications

$X
fun x type focal .id_fun .id_x

1 identity asi numeric TRUE 1 1
2 identity faculty factor FALSE 1 2
3 identity stat.anx.TOT numeric FALSE 1 3
5 slog stat.anx.TOT numeric FALSE 2 3

call
1 asi
2 faculty
3 stat.anx.TOT
5 slog(stat.anx.TOT)

$calls
[1] "~ asi"
[2] "~ asi + faculty"
[3] "~ asi + stat.anx.TOT"
[4] "~ asi + slog(stat.anx.TOT)"
[5] "~ asi + faculty + stat.anx.TOT"
[6] "~ asi + faculty + slog(stat.anx.TOT)"

Creating the specifications

Whatever the method we used, we need:

▶ a list of models
▶ a way to easily extract the coefficients or other quantities
▶ a way to extract a summary of the specifications i.e. if a

variable is included or not, the type of tranformation, etc.

Pay attention with interactions!

When an interaction is included in the model, the interpretation of
the model coefficients completely change, especially if the
interaction is consistent. You cannot compare a focal coefficients
directly for models with and without interactions.

Let’s assume that asi is the focal coefficient and we include in the
multiverse these two models:
fit_int <- lm(math.anx ~ faculty + asi + faculty:asi, data = dat)
fit_no_int <- lm(math.anx ~ faculty + asi, data = dat)

Pay attention with interactions!
The asi effect in one case is the overall effect (i.e., main effect)
controlling for faculty. In the other case is the asi effect of the
reference value.

Interaction No Interaction

2 3 4 5 2 3 4 5

2.0

2.5

3.0

3.5

4.0

asi

m
at

h.
an

x

arts science other

Pay attention with interactions!
One should adjust the contrasts coding of factors and/or the
centering of numeric variables.
sum to zero contrasts i.e. estimating the main effect of asi
update(fit_int, contrasts = list(faculty = contr.sum(3)))

Call:
lm(formula = math.anx ~ faculty + asi + faculty:asi, data = dat,

contrasts = list(faculty = contr.sum(3)))

Coefficients:
(Intercept) faculty1 faculty2 asi faculty1:asi

1.8597 0.6839 -0.4048 0.3087 -0.1234
faculty2:asi

0.1590
with emmeans
emmeans::emtrends(fit_int, ~1, var = "asi")

1 asi.trend SE df lower.CL upper.CL
overall 0.309 0.11 194 0.0925 0.525

Results are averaged over the levels of: faculty
Confidence level used: 0.95

Why exploring is important?

A multiverse analysis increase the complexity of the data analysis.
There is no longer a single dataset and result to discuss.

Let’s create some scenarios :)

Firstly, we use variable transformations directly within the model
formula. In this way it is easier to extract the conditions. Thus we
define some wrappers:
safe version of log() with 0 variables
slog <- function(x){

if(any(x == 0)){
x <- x + 1

}
log(x)

}

function factories, see https://adv-r.hadley.nz/function-factories.html
polyN <- function(degree = 1){

function(x) poly(x, degree = degree)
}

poly2 <- polyN(2)
poly3 <- polyN(3)

Let’s create some scenarios :)

More wrappers:
cutN <- function(breaks){

function(x){
cut(x, breaks = breaks)

}
}

cut2 <- cutN(2)
cut4 <- cutN(4)

Let’s create some scenarios :)

Then we can identify some univariate/multivariate outliers or some
observations that we may consider removing for some reasons.

Let’s create some scenarios :)

focal <- "self.efficacy"

multi <- create_multi(
math.anx ~ self.efficacy + faculty + asi + gender.category +

program.type + frost.da,
focal = focal,
nfuns = c("slog", "cut2", "poly2"),
data = dat

)

Let’s fit the models
faster than before
get_coef <- function(x, coef = NULL){

xs <- data.frame(summary(x)$coefficients)
if(!is.null(coef)){

xs <- xs[coef,]
}
xs$param <- rownames(xs)
return(xs)

}

fitl <- vector(mode = "list", length = length(multi$calls))

for(i in 1:length(multi$calls)){
form <- paste0("math.anx", multi$calls[i])
fitl[[i]] <- glm(form, family = gaussian(link = "identity"), data = dat)

}

resl <- lapply(fitl, get_coef, focal)
res <- bind_rows(resl, .id = "mod")
rownames(res) <- NULL
names(res) <- c("mod", "b", "se", "t", "p", "param")

Let’s fit the models

Now we have a dataframe with all the model coefficients across
the specifications. We can start our multiverse!
head(res)

mod b se t p param
1 1 -0.3955213 0.10133460 -3.903122 0.0001301284 self.efficacy
2 2 -0.3315150 0.10439789 -3.175495 0.0017375474 self.efficacy
3 3 -0.3302943 0.09599808 -3.440634 0.0007084586 self.efficacy
4 4 -0.3041665 0.10324396 -2.946095 0.0036060375 self.efficacy
5 5 -0.3335836 0.09874191 -3.378339 0.0008788681 self.efficacy
6 6 -0.2266493 0.10148550 -2.233317 0.0266529679 self.efficacy

Exploratory tools

▶ Marginal/Conditional effects
▶ Vibration of Effects
▶ Specification Curve

Marginal/Conditional effects
Overall distribution of regression parameters:

0

5

10

15

−0.4 −0.3 −0.2
self.efficacy

co
un

t

Marginal/Conditional effects

We can combine the model results with a table created by all
conditions with the custom get_info_models() function:
info <- get_info_models(multi)
head(info)

A tibble: 6 x 7
mod x_self.efficacy x_faculty x_asi x_gender.category

<int> <chr> <chr> <chr> <chr>
1 1 self.efficacy <NA> <NA> <NA>
2 2 self.efficacy faculty <NA> <NA>
3 3 self.efficacy <NA> asi <NA>
4 4 self.efficacy <NA> <NA> gender.category
5 5 self.efficacy <NA> <NA> <NA>
6 6 self.efficacy <NA> <NA> <NA>
i 2 more variables: x_program.type <chr>, x_frost.da <chr>

Marginal/Conditional effects
Then we can combine the info table with the coefficients table
and we have all the important information.
same type
res$mod <- as.numeric(res$mod)
info$mod <- as.numeric(info$mod)
merging the two tables
multi_res <- left_join(res, info, by = "mod")
head(multi_res)

mod b se t p param
1 1 -0.3955213 0.10133460 -3.903122 0.0001301284 self.efficacy
2 2 -0.3315150 0.10439789 -3.175495 0.0017375474 self.efficacy
3 3 -0.3302943 0.09599808 -3.440634 0.0007084586 self.efficacy
4 4 -0.3041665 0.10324396 -2.946095 0.0036060375 self.efficacy
5 5 -0.3335836 0.09874191 -3.378339 0.0008788681 self.efficacy
6 6 -0.2266493 0.10148550 -2.233317 0.0266529679 self.efficacy

x_self.efficacy x_faculty x_asi x_gender.category x_program.type
1 self.efficacy <NA> <NA> <NA> <NA>
2 self.efficacy faculty <NA> <NA> <NA>
3 self.efficacy <NA> asi <NA> <NA>
4 self.efficacy <NA> <NA> gender.category <NA>
5 self.efficacy <NA> <NA> <NA> program.type
6 self.efficacy <NA> <NA> <NA> <NA>

x_frost.da
1 <NA>
2 <NA>
3 <NA>
4 <NA>
5 <NA>
6 frost.da

Marginal/Conditional effects
Finally we can plot also the distributions of parameters conditioned
on the presence/absence of a particular other predictor:

0

5

10

15

−0.3 −0.2
b

de
ns

ity

name x_asi x_faculty x_frost.da x_gender.category x_program.type

Vibration of Effects (VoE) (Patel et al., 2015)

Assessment of vibration of effects due to model specification

can demonstrate the instability of observational associations

Chirag J. Patela, Belinda Burfordb, John P.A. Ioannidisa,c,d,e,f,*
aDepartment of Biomedical Informatics, Harvard Medical School, 10 Shattuck St., Room 314A, Boston, MA 02115, USA

b
Melbourne School of Population and Global Health, Level 4, 207 Bouverie St., The University of Melbourne, Victoria 3010, Australia

c
Department of Medicine, Stanford Prevention Research Center, Stanford University School of Medicine, Medical School Office Building,

Room X306, 1265 Welch Rd, Stanford, CA 94305, USA
dDepartment of Statistics, Stanford University School of Humanities and Sciences, Stanford, CA 94305, USA

e
Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA

f
Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA 94305, USA

Accepted 30 May 2015; Published online 6 June 2015

Journal of Clinical Epidemiology 68 (2015) 1046e1058

Vibration of Effects (VoE) (Patel et al., 2015)

The VoE is a statistical approach to evaluate the variability in
effect estimates and p value due to different sources of variability
(i.e., vibrations)

▶ sampling vibration: subsets of the full dataset
▶ model vibration: combinations of control variables
▶ pre-processing vibration: inclusio/exclusion criteria, outliers,

etc.

Vulcano Plot
The Vulcano Plot is the graphical tool used in the VoE as a
diagnostic tool.

1

2

3

4

0.00 0.25 0.50 0.75

β

−
lo

g 1
0(p

)

Vulcano Plot

The x axis is the effect size. Usually a regression coefficient of a
focal parameter. Can be a raw or standardized regression
coefficient or whatever effect size measure.

The y axis is the associated p-value transformed in − log10(𝑝) for
better intepretation and visualization. Higher tranformed p values
are smaller raw p values.

Vibration of Effects (VoE)
The authors proposed to summarise the VoE using the range of
effect sizes and p values. In particular the difference between the
99𝑡ℎ and 1𝑠𝑡 percentiles.

1

2

3

4

0.00 0.25 0.50 0.75

β

−
lo

g 1
0(p

)

Vibration of Effects (VoE)
They identified three usual pattern for a Vulcano Plot:

Robust Janus Mixed

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

2

4

6

β

−
lo

g 1
0(p

)

Vibration of Effects (VoE)

The Robust plot suggests a stable pattern across specifications,
with the majority if not the total being positive and significant.

The Janus1 plot suggests the worst scenario where in some
conditions the effect is not only not significant but reversed.

The Mixed plot suggests a less robust effect with few effect size
reversals in rare specifications.

1Fun fact: Janus comes from the Roman/Greek god with two faces :)

P-values transformation
There are different ways to transform p-values to improve the
interpretation and visualization.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

P−value

−
lo

g 1
0(p

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

P−value

z p

P-values transformation
Values higher than ~1.3 (in log10) or ~2 (𝑧 transformation) are
significant assuming the traditional 𝛼 = 0.05.

0.00 0.04 0.08

1.
0

1.
5

2.
0

2.
5

3.
0

P−value

−
lo

g 1
0(p

)

0.00 0.04 0.08

2.
0

2.
5

3.
0

P−value

z p

Vulcano plot with our data

We can create a basic version of the vulcano plot with our dataset:
multi_res |>

mutate(sign = ifelse(p <= 0.05, "<= 0.05", "> 0.05"),
sign = factor(sign, levels = c("<= 0.05", "> 0.05"))) |>

ggplot(aes(x = b, y = tp(p, "-log10"))) +
geom_point(aes(shape = sign, color = sign), size = 5) +
ylab("-log10(p)") +
xlab(focal) +
scale_shape_manual(values = c(3, 16)) +
theme(legend.title = element_blank())

Vulcano plot with our data

1

2

3

4

−0.4 −0.3 −0.2
self.efficacy

−
lo

g1
0(

p)

<= 0.05
> 0.05

Marginal/Conditional effects

A way to evaluate the impact of the multiverse scenario could be
to use an ANOVA-style way of thinking. We can fit a regression
model on the multiverse where the focal coefficient is the response
variable and a series of dummy variables to code the
inclusion/exclusion of a certain predictor.

Then we can estimate the % of explained variance of each
predictor as an index of the impact in the multiverse results.

A more refined version of this approach can be found in Klau et al.
(2023)

Decomposing the multiverse variance

We can create a dataset with dummy variables when a specific
predictor is included or not. We are ignoring the transformations of
the specific variable.
A tibble: 6 x 6

b faculty asi gender.category program.type frost.da
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 -0.396 0 0 0 0 0
2 -0.332 1 0 0 0 0
3 -0.330 0 1 0 0 0
4 -0.304 0 0 1 0 0
5 -0.334 0 0 0 1 0
6 -0.227 0 0 0 0 1

Decomposing the multiverse variance
Then we can fit a linear regression and then evaluate the impact of
including/excluding a predictor.
fit <- lm(b ~ ., data = multi_fit)
summary(fit)

Call:
lm(formula = b ~ ., data = multi_fit)

Residuals:
Min 1Q Median 3Q Max

-0.071822 -0.013166 0.002804 0.014675 0.037509

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.323699 0.004734 -68.375 <2e-16 ***
faculty 0.027851 0.002733 10.190 <2e-16 ***
asi 0.002285 0.003417 0.669 0.504
gender.category 0.037357 0.002733 13.668 <2e-16 ***
program.type 0.028599 0.002733 10.463 <2e-16 ***
frost.da 0.099365 0.003417 29.083 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01933 on 194 degrees of freedom
Multiple R-squared: 0.8653, Adjusted R-squared: 0.8618
F-statistic: 249.3 on 5 and 194 DF, p-value: < 2.2e-16

Decomposing the multiverse variance

effectsize::eta_squared(fit, partial = FALSE)

Specification Curve (Simonsohn et al., 2020)
The specification curve is both an inferential and descriptive tool
to summarise the results from a multiverse analysis.

� �

0

5

10

15 E
x
tra

 d
e
a
th

s

Drop none
Drop 1 highest deaths
Drop 2 highest deaths

Drop none
Drop 1 highest damages
Drop 2 highest damages
Drop 3 highest damages

Female (1/0)
Rating on Likert scale (1–11)

Log(fatalities + 1)
Negative binomial

Linear: $
Log: ln($)

Interaction with damages
Interaction with damages and min. pressure

Interaction with damages & wind
Interaction with damages and hurricane category

Interaction with damages and with mean (pressure, wind, category)
Main effect

None
Year × damages

Post 1979 (1/0) × damages

Dropping outliers

Dropping leverage points

Femininity of name

Model

Functional for damages

Femininity of name: main effect or interaction with intensity

Controlling for year

1 50 250 300

Specification (n)

Original specification P < 0.05 NS

Specification Curve as descriptive tool

Basically from M specifications we extract the focal coefficient
then:

▶ we sort the coefficients from the lowest to the highest and
assign a progressive index

▶ we plot the index as a function of the coefficient value
▶ for each scenario we code the corresponding set of

conditions/variables
▶ we combine the previous plot with a tile-plot (or similar)

showing for each scenario the set of variables/choices

Specification with the dataset
spec_data <- multi_res |>

sorting
arrange(desc(b)) |>
index with the order
mutate(spec = 1:n())

top <- spec_data |>
confidence intervals
mutate(lb = b - se * 2,

ub = b + se * 2) |>
ggplot(aes(x = spec, y = b)) +
geom_point() +
theme(axis.text.x = element_blank(),

axis.title.x = element_blank(),
axis.title.y = element_blank())

bottom <- spec_data |>
pivot_longer(starts_with("x_")) |>
drop_na() |>
mutate(name = gsub("x_", "", name)) |>
ggplot(aes(x = spec, y = value)) +
geom_point() +
theme(axis.title.y = element_blank(),

strip.text.y = element_text(size = 9),
axis.text.y = element_text(size = 9)) +

xlab("Specification") +
facet_grid(name~., scales = "free")

Specification with the dataset

−0.4

−0.3

−0.2

asi
faculty

frost.da
gender.categoryprogram

.type
self.efficacy

0 50 100 150 200

asi
cut2(asi)

poly2(asi)
slog(asi)

faculty

cut2(frost.da)
frost.da

poly2(frost.da)
slog(frost.da)

gender.category

program.type

self.efficacy

Specification

Other descriptive tools

In general, any descriptive statistics can be useful. The main
points in a multiverse description are:

▶ the range of the estimated effects
▶ the impact of the choices
▶ the impact on the conclusions (e.g., statistical significance)

Can the EMA be misleading?

Let’s have a look to another example
We have a multiverse with 31 scenarios, 50 observations and 5
predictors, this is the vulcano plot. What do you think?

p = 0.05

0

1

2

−0.50 −0.25 0.00 0.25
Coefficients

−
lo

g1
0(

p) X1
X2
X3
X4
X5

Let’s have a look to another example2

From the previous multiverse it is clear that something is going on.
Some of the coefficients are significant and other not. There is also
a little bit of Janus effect.

But, the previous example was a simulated multiverse where all the
coefficients 𝛽𝑗 = 0 (the null hypothesis is true). All the
significant scenarios are false positives (type-1 error)!

2Thanks to Livio Finos for the insightful example

Let’s have a look to another example2

From the previous multiverse it is clear that something is going on.
Some of the coefficients are significant and other not. There is also
a little bit of Janus effect.

But, the previous example was a simulated multiverse where all the
coefficients 𝛽𝑗 = 0 (the null hypothesis is true). All the
significant scenarios are false positives (type-1 error)!

2Thanks to Livio Finos for the insightful example

Why? multiple testing problem!

▶ A multiverse can be considered as a multiple testing
problem because we are testing a set of hypotheses with the
same dataset. The type-1 error rate (𝛼) need to be controlled
otherwise the actual level is higher than the nominal level.

▶ We can demonstrate this with a simple simulation. We
simulate 𝑘 variables and a one-sample t-test for each variable.
The ground truth is that we have 𝜇1, 𝜇2, … , 𝜇𝑘 = 0 thus 𝐻0
is true.

▶ We repeat the simulation 𝐵 times and we count how many
times 𝑝 ≤ 𝛼 for at least one of the 𝑘 tests. This is our
estimated type-1 error rate.

Why? multiple testing problem!
k <- 10 # number of variables
n <- 100 # number of observations
R <- 0 + diag(1 - 0, k) # correlation matrix
B <- 1e3

PM <- matrix(NA, B, k)

for(i in 1:B){
X <- MASS::mvrnorm(n, rep(0, k), R)
p <- apply(X, 2, function(x) t.test(x)$p.value)
PM[i,] <- p

}

type-1 error for each variable, ignoring multiple testing
apply(PM, 2, function(x) mean(x <= 0.05))

[1] 0.048 0.045 0.055 0.052 0.052 0.061 0.049 0.049 0.056 0.059
type-1 error considering the k tests (should be alpha)
mean(apply(PM, 1, function(x) any(x <= 0.05)))

[1] 0.427

Why? multiple testing problem!
To have a better overview, we can repeat the simulation for
different number of 𝑘. Quite scary right?

0.25

0.50

0.75

1.00

0 25 50 75 100
Number of tests (k)

Ty
pe

−
1

E
rr

or

So what? No multiverse?

Exploring is fine and is quite important if not fundamental. But,
when we explore the p-values thus the inferential results from the
single scenarios, we are inflating the type-1 error and our
inferential conclusions are no longer valid.

If we want an inferential answer from our multiverse (not always
the case) we need a proper inferential framework. This is the role
of the inferential multiverse analaysis.

So what? No multiverse?

Exploring is fine and is quite important if not fundamental. But,
when we explore the p-values thus the inferential results from the
single scenarios, we are inflating the type-1 error and our
inferential conclusions are no longer valid.

If we want an inferential answer from our multiverse (not always
the case) we need a proper inferential framework. This is the role
of the inferential multiverse analaysis.

Inferential Multiverse Analysis
(IMA)

Family-wise error rate (FWER)3

𝐻0

False True Tot

Rejected True Positive (S) False Positive (V) 𝑅
Test Not rejected False Negative (T) True Negative (U) 𝑚 − 𝑅

Tot 𝑚1 𝑚0 𝑚

The FWER is the probability of committing type-1 error thus
P(𝑉 > 0). Controlling the FWER (whatever the methods) keep
P ≤ 𝛼.

There are different procedures for controlling the FWER, such as
the Bonferroni or the Holm–Bonferroni method.

3Thanks to Anna Vesely for the amazing introduction to the multiple testing
problem (see the slides)

https://psicostat.dpss.psy.unipd.it/files/2023-04-28_vesely.pdf

Correcting the p-values

The main problem is that the number of tests in a multiverse can
be quite large.

As an example, we simulated a series of tests with different effect
size to show the impact on the type-1 error rate and the power.

Correcting the p-values

The main problem is that the number of tests in a multiverse can
be quite large.

As an example, we simulated a series of tests with different effect
size to show the impact on the type-1 error rate and the power.

Correcting the p-values
Using a standard method (e.g., Bonferroni) clearly controls the
type-1 error but reduces a lot the statistical power. At the same
time, without correction the inflation is large.

50 100

5 10

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Effect size (H0: d = 0)

A
t l

ea
st

 o
ne

 p
 <

=
 0

.0
5

bonferroni raw

Correlation between scenarios is (probably)
large

The multiverse scenarios are computed on the same dataset thus
the correlation between tests is probably medium-large. For
example:
x <- runif(100, 5, 10)
y <- x * 0.1 + rnorm(100)

fit1 <- lm(y ~ x)
fit2 <- lm(y ~ cut(x, breaks = 2))
fit3 <- lm(y ~ log(x))
fit4 <- lm(y ~ poly(x, 2))

pp <- sapply(list(fit1, fit2, fit3, fit4), predict)
round(cor(pp), 2)

[,1] [,2] [,3] [,4]
[1,] 1.00 0.88 1.00 0.99
[2,] 0.88 1.00 0.88 0.88
[3,] 1.00 0.88 1.00 1.00
[4,] 0.99 0.88 1.00 1.00

A more powerful correction method4

The Bonferroni (and similar) methods assume that the tests are
independent thus regardless the dependence structure the FWER is
under control.

The permutation-based methods (maxT, minP, etc.) take into
account the correlation structure providing FWER control under
𝐻0 but a more powerful test under 𝐻1.

4Goeman & Solari (2014)

Permutation testing in a nutshell

Permutation testing requires computing the distribution of the test
statistics 𝑇 where we know that 𝐻0 is true.

We can force the null to be true permuting the data removing the
assumed effect. We repeat this process a large number of times 𝐵.

Then we compare the observed test statistics 𝑇1 with the
distribution of permuted test statistics obtaining the permutation
based p-value 𝑝 = #(𝑇1≥T𝐵)

𝐵
5

5# is the count function.

Permutation testing in a nutshell

Permutation testing requires computing the distribution of the test
statistics 𝑇 where we know that 𝐻0 is true.

We can force the null to be true permuting the data removing the
assumed effect. We repeat this process a large number of times 𝐵.

Then we compare the observed test statistics 𝑇1 with the
distribution of permuted test statistics obtaining the permutation
based p-value 𝑝 = #(𝑇1≥T𝐵)

𝐵
5

5# is the count function.

Permutation testing in a nutshell

Permutation testing requires computing the distribution of the test
statistics 𝑇 where we know that 𝐻0 is true.

We can force the null to be true permuting the data removing the
assumed effect. We repeat this process a large number of times 𝐵.

Then we compare the observed test statistics 𝑇1 with the
distribution of permuted test statistics obtaining the permutation
based p-value 𝑝 = #(𝑇1≥T𝐵)

𝐵
5

5# is the count function.

Permutation testing in a nutshell

Let’s make an example with a two-groups comparison:
N <- 30
d <- 1 # effect size
x <- rep(c(0, 1), each = N/2) # dummy for the group
y <- rnorm(N, d * x, 1)
tapply(y, x, mean)

0 1
-0.3933720 0.4743739

Permutation testing in a nutshell
Let’s make an example with a two-groups comparison:

−2

0

2

0 1
x

y

Permutation testing in a nutshell

We need to flip the group label thus removing the group effect.
B <- 1e3 # number of permutations
tp <- rep(NA, B)
tp[1] <- t.test(y ~ x)$statistic # first permutation always the observed data

sample(x) # shuffling the group label

[1] 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1
for(i in 2:B){

xp <- sample(x)
tp[i] <- unname(t.test(y ~ xp)$statistic)

}

mean(abs(tp) >= abs(tp[1]))

[1] 0.038

Permutation testing in a nutshell

0

10

20

30

40

−2 0 2 4
TB

co
un

t

maxT procedure Westfall & Stanley Young
(1993)

The maxT is a permutation-based method to control the FWER.
With the method we can obtain:

▶ overall inference across 𝑀 tests with weak control of FWER
▶ individually adjusted p-values for each test (i.e, strong FWER

control)

maxT with correlated variables
Beyond the actual method and algorithm, the advantage of the
maxT approach is taking into account the correlation between
tests.

ρ = 0.5 ρ = 0.9

ρ = 0 ρ = 0.3

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Raw p−value

C
or

re
ct

ed
 p

−
va

lu
e

Bonferroni maxT

Inferential Methods

▶ Specification Curve
▶ Post-Selection Inference in Multiverse Analysis (PIMA)

Specification Curve

The specification curve (Simonsohn et al., 2020) is the first
attempt to build an inferential framework for multiverse analysis.

▶ provides only weak control of type-1 error
▶ is not directly applicable to GLMs (only standard linear

models, see Girardi et al., 2024)
▶ is computationally expensive

The PIMA recipe… (Girardi et al., 2024)

PIMA provides weak and strong type-1 error control with a
powerful method based on permutations (maxT) and applicable to
whatever GLM (Logistic, Poisson, etc.).

For constructing the inferential approach with PIMA we need:

▶ a flexible modelling framework: Generalized Linear Models
▶ a permutation-based inferential approach: Flipscores
▶ a permutation-based and powerful method for weak and

strong FWER control: maxT

The core of PIMA, the flipscores method

▶ The formal part of the flipscores method is quite complex
and beyond our scope and expertise. But a detailed
description can be found in Hemerik et al. (2020) and Girardi
et al. (2024).

▶ Essentially the flipscores method is an alternative way of
doing inference for parameters of a GLM based on
permutations.

▶ The idea is conceptually the same as the two-groups example,
but can works for multiple regression models with covariates
and interactions.

Intution of flipscores

This method can be extended to whatever GLM and to any
number of predictors/confounders.

The actual permutation test is obtained flipping the sign of the
scores/residuals thus obtaining the distribution under the null
hypothesis of the test statistics.

Everthing is implemented into the flipscores package (Hemerik
et al., 2020) and on CRAN
https://cran.r-project.org/web/packages/flipscores/index.html.

https://cran.r-project.org/web/packages/flipscores/index.html

flipscores package
With the flipscores function is very easy to fit a linear model
with permutations-based p-values.
library(flipscores)
fit <- flipscores(Sepal.Length ~ Petal.Width + Species, data = iris)
summary(fit)

Call:
flipscores(formula = Sepal.Length ~ Petal.Width + Species, data = iris)

Coefficients:
Estimate Score Std. Error z value Part. Cor

(Intercept) 4.78044 160.25913 13.50622 11.86558 0.979
Petal.Width 0.91690 5.64500 1.27732 4.41941 0.365
Speciesversicolor -0.06025 -0.26260 1.00098 -0.26234 -0.022
Speciesvirginica -0.05009 -0.09030 0.64372 -0.14028 -0.012

Pr(>|z|)
(Intercept) 0.0002 ***
Petal.Width 0.0002 ***
Speciesversicolor 0.7932
Speciesvirginica 0.9008

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.2313718)

Null deviance: 102.17 on 149 degrees of freedom
Residual deviance: 33.78 on 146 degrees of freedom
AIC: 212.07

Number of Fisher Scoring iterations: 2

Intuition of PIMA

The idea of PIMA is to extend the flipscores method to 𝑀
models (where 𝑀 is the number of scenarios) and perform
inference at the multiverse level.

Using the maxT approach we can combine the 𝑀 tests into a
single test with weak control of FWER. The global null hypothesis
is:

ℋ =
𝑀
⋂

𝑚=1
ℋ𝑚 ∶ 𝛽𝑚 = 0 for all 𝑚 = 1, … , 𝑀.

In addition, we can correct the indidual p-values with strong
FWER control using the maxT method.

The pima package

We are implementing everything into the pima package that is
under development. You can try it but there could be bugs and
breaking changes in the near future.

You can explore the package here
https://github.com/livioivil/pima. The package mainly depends on
jointest that is the actual package for combining multiple
(correlated) tests and correcting them.

https://github.com/livioivil/pima

The pima package

The package has a main function called pima::pima() that takes
a list of models (of class glm) and compute the global test and the
correction for individual scenarios.
fitl is the list of fitted models
tested_coeffs is the focal variable, other are confounders

library(pima)

this is a bug/part to be improved, ignore
for(i in 1:length(fitl)){

fitl[[i]]$call$formula <- as.formula(fitl[[i]]$formula)
}

multi_pima <- pima(fitl, tested_coeffs = "self.efficacy")

The pima results
The correlations between the scenarios is very high, the maxT
method will be powerful!

M

M

ρ

0.7

0.8

0.9

1.0

The pima results
overall test, weak control FWER
summary(pima::global_tests(multi_pima))

Model Coeff Stat nTests S p
1 Overall self.efficacy maxT 200 30.26 6e-04
adjusted p values, strong control FWER
head(summary(multi_pima))

Model .assign Coeff Estimate Score Std. Error
1 Model1 1 self.efficacy -0.3955213 -30.26473 8.026511
2 Model2 1 self.efficacy -0.3315150 -23.30487 7.506267
3 Model3 1 self.efficacy -0.3302943 -24.84790 7.416916
4 Model4 1 self.efficacy -0.3041665 -21.44863 7.420203
5 Model5 1 self.efficacy -0.3335836 -24.92025 7.567967
6 Model6 1 self.efficacy -0.2266493 -15.42204 6.974630

z value Part. Cor p p.adj.maxT
1 -3.770596 -0.2672905 0.0004 0.001
2 -3.104722 -0.2212023 0.0020 0.005
3 -3.350167 -0.2380860 0.0014 0.004
4 -2.890572 -0.2054240 0.0020 0.010
5 -3.292859 -0.2340133 0.0020 0.004
6 -2.211162 -0.1571404 0.0240 0.072

maxT correction

0

1

2

3

4

0 1 2 3 4
−log10(p−values)

−
lo

g1
0(

m
ax

T
 p

−
va

lu
es

)

sign
never
before maxT
after maxT

maxT correction impact

Improved vulcano plot

1

2

3

−0.4 −0.3 −0.2
Estimate

−
lo

g1
0(

p)

p <= 0.05 never before maxT after maxT

References

Girardi, P., Vesely, A., Lakens, D., Altoè, G., Pastore, M., Calcagnì, A., & Finos, L.
(2024). Post-selection inference in multiverse analysis (PIMA): An inferential
framework based on the sign flipping score test. Psychometrika, 89, 542–568.
https://doi.org/10.1007/s11336-024-09973-6

Goeman, J. J., & Solari, A. (2014). Multiple hypothesis testing in genomics. Statistics
in Medicine, 33, 1946–1978. https://doi.org/10.1002/sim.6082

Götz, M., Sarma, A., & O’Boyle, E. H. (2024). The multiverse of universes: A tutorial
to plan, execute and interpret multiverses analyses using the r package multiverse.
International Journal of Psychology: Journal International de Psychologie, 59,
1003–1014. https://doi.org/10.1002/ijop.13229

Hemerik, J., Goeman, J. J., & Finos, L. (2020). Robust testing in generalized linear
models by sign flipping score contributions. Journal of the Royal Statistical
Society. Series B, Statistical Methodology, 82, 841–864.
https://doi.org/10.1111/rssb.12369

Klau, S., Felix, Patel, C. J., Ioannidis, J. P. A., Boulesteix, A.-L., & Hoffmann, S.
(2023). Comparing the vibration of effects due to model, data pre-processing and
sampling uncertainty on a large data set in personality psychology.
Meta-Psychology, 7. https://doi.org/10.15626/mp.2020.2556

https://doi.org/10.1007/s11336-024-09973-6
https://doi.org/10.1002/sim.6082
https://doi.org/10.1002/ijop.13229
https://doi.org/10.1111/rssb.12369
https://doi.org/10.15626/mp.2020.2556

References (cont.)

McCaughey, N. J., Hill, T. G., & Mackinnon, S. P. (2022). The association of
self-efficacy, anxiety sensitivity, and perfectionism with statistics and math
anxiety. Personality Science, 3. https://doi.org/10.5964/ps.7091

Patel, C. J., Burford, B., & Ioannidis, J. P. A. (2015). Assessment of vibration of
effects due to model specification can demonstrate the instability of observational
associations. Journal of Clinical Epidemiology, 68, 1046–1058.
https://doi.org/10.1016/j.jclinepi.2015.05.029

Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2020). Specification curve analysis.
Nature Human Behaviour, 4, 1208–1214.
https://doi.org/10.1038/s41562-020-0912-z

Westfall, P. H., & Stanley Young, S. (1993). Resampling-based multiple testing:
Examples and methods for p-value adjustment. John Wiley & Sons.

https://doi.org/10.5964/ps.7091
https://doi.org/10.1016/j.jclinepi.2015.05.029
https://doi.org/10.1038/s41562-020-0912-z

	Exploratory Multiverse Analysis (EMA)
	Can the EMA be misleading?
	Inferential Multiverse Analysis (IMA)

