critical_coef
critical_coef.Rd
This function allows to calculate the critical beta.
Arguments
- seb
a numeric vector of standard error of the regression coefficients.
- n
a number corresponding to the sample size.
- p
number of parameters.
- df
degrees of freedom.
- conf.level
the confidence level to set the confidence interval, default is set to 0.95.
- hypothesis
a character string indicating the alternative hypothesis ("less", "greater" or "two.tailed").
- test
a parameter to specify which test to apply, either "t" for a t-test or "z" for a z-test.
Examples
# critical value from sample size and standard errors of the parameters
n <- 170
p = 3
seb <- c(25,.25,.10)
# seb is an hypothetical vector of standard errors from summary() of an lm() model
critical_coef(seb = seb, n = n, p = p)
#> $bc
#> [1] 49.3589441 0.4935894 0.1974358
#>
#> $test
#> [1] "t"
#>
# using a fitted model
fit <- lm(mpg ~ disp + hp, data = mtcars)
fits <- summary(fit)
seb <- fits$coefficients[, "Std. Error"]
critical_coef(seb = seb, n = nrow(fit$model), p = ncol(fit$model) - 1)
#> $bc
#> (Intercept) disp hp
#> 2.72335852 0.01514463 0.02737642
#>
#> $test
#> [1] "t"
#>