critical_cor
critical_cor.Rd
This function allows to calculate the critical correlation value. When using test = "t"
, the critical value is calculated assuming a Student t distribution with \(n - 2\) degrees of freedom and the standard error calculated using the raw correlation coefficient. When test = "z"
, the critical value is calculated assimong a standard Normal distribution and the standard error is calculated applying the Fisher's z transformation.
Arguments
- r
a number corresponding to the correlation coefficient.
- n
a number corresponding to the sample size.
- conf.level
the confidence level to set the confidence interval, default is set to 0.95.
- hypothesis
a character string indicating the alternative hypothesis ("less", "greater" or "two.tailed").
- test
a parameter to specify which test to apply, either "t" for a t-test or "z" for a z-test.
Value
rc
is the critical correlation value, rzc
is the Fisher's z transformed critical correlation, df
are the degrees of freedom, se_r
is the standard error of the observed correlation, se_rc
is the standard error of the critical correlation, se_rzc
is the standard error of the Fisher's z transformed critical correlation and test
is the statistical test (either t or z).
Examples
# critical value from r and sample size
r <- .25
n <- 30
critical_cor(r = r, n = n, test = "t")
#> $rc
#> [1] 0.3610069
#>
#> $rzc
#> [1] NA
#>
#> $df
#> [1] 28
#>
#> $se_r
#> [1] 0.1829813
#>
#> $se_rc
#> [1] 0.1762379
#>
#> $se_rzc
#> [1] NA
#>
#> $test
#> [1] "t"
#>
critical_cor(r = r, n = n, test = "z") # using Fisher's z transformation
#> $rc
#> [1] 0.3602692
#>
#> $rzc
#> [1] 0.3771952
#>
#> $df
#> [1] 28
#>
#> $se_r
#> [1] 0.1762918
#>
#> $se_rc
#> [1] 0.1762918
#>
#> $se_rzc
#> [1] 0.1924501
#>
#> $test
#> [1] "z"
#>